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Abstract: Genome-Wide Association Studies (GWAS) have rapidly become a 
major genetics approach to studying complex diseases. Although many 
susceptibility variants and genes have been uncovered by single marker 
analysis, gene set based analysis is emerging as a very promising approach 
aiming to detect joint association of a set of genes with disease. In the available 
gene set based methods, it is often the smallest P value of the Single Nucleotide 
Polymorphisms (SNPs) in a gene region is used to represent the gene-level 
association signal. This approach may introduce strong bias of association 
signal towards long genes. In this study, we propose a resampling strategy by 
randomly generating genomic intervals across the accessible genomic region to 
estimate the background distribution of P values at the gene level. Comparing 
with the gene-wise P value in real data, the proportion of random intervals 
could be used to assess the bias that might be introduced by gene length and in 
turn to help the investigators choose the appropriate gene set analysis 
algorithms in their GWAS datasets. Our method uses only summarised  
GWAS data with no need of permutation, thus, it is computationally efficient. 
A computer program is freely available for the users. 

Keywords: GWAS; genome-wide association studies; pathway enrichment 
analysis; gene set; gene length; bias. 
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1 Introduction 

Genome-Wide Association Studies (GWAS) have rapidly become a major genetics 
approach to studying complex diseases, under the hypothesis of “Common Disease-
Common Variant (CD-CV)” (Lohmueller et al., 2003). In a typical GWA study, half to a 
few million SNPs across the human genome are systematically tested in hundreds to 
thousands of samples for their association with complex diseases or traits. Recent success 
of GWA studies has uncovered many disease susceptibility genes or variants. However, 
more effort is much needed to mine abundant genetic association signal from various 
available GWAS data due to two reasons. First, only a few variants or genes, sometimes 
even none, could reach genome-wide significance (P < 5 × 10–8) in a typical GWA study 
(Jia et al., 2011b). Second, complex diseases might be caused by many genetic variants 
with weak or moderate risk, but they interact with each other to have major risk. 
Therefore, Gene Set Enrichment Analysis (GSEA), especially pathway-based enrichment 
analysis, of GWAS data has recently become one of the most promising approaches.  
It is proposed to provide alternative insights than the traditional single marker analysis 
(Wang et al., 2010) and has been proved to be promising in many studies (Jia et al., 2010;  
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Wang et al., 2007, 2009). For this approach, several methods have been applied in a 
variety of diseases, such as GSEA (Wang et al., 2007), traditional hypergeometric test 
(Jia et al., 2010), ALIGATOR (Holmans et al., 2009), GRASS (Chen et al., 2010), and 
dmGWAS (Jia et al., 2011a). The pipeline that implements such approaches typically 
includes the following procedures. 

• to perform an association test of single markers such as the basic allelic test and the 
Cochran-Armitage trend test 

• to map SNPs in the GWAS dataset to the corresponding genes 

• to annotate or group genes into gene sets such as biological pathways  
(Kanehisa et al., 2008) or Gene Ontology (GO) categories (Ashburner et al. 2000) 

• to perform statistic test of association significance at the gene set level (Dinu et al., 
2007; O’Dushlaine et al., 2009, 2010; Perry et al., 2009; Subramanian et al., 2005; 
Tian et al., 2005; Wu et al., 2010). 

A key procedure in such a pipeline is how to map SNPs to genes and estimate the 
summarised P values at the gene level (i.e., gene-wise P values). Although many 
methods have been proposed in recent literatures, including Fisher’s combined method 
(Luo et al., 2010; Peng et al., 2010), the Simes’ method (Peng et al., 2010; Simes, 1986; 
Wang et al., 2007), and gene-wise FDR correction (Luo et al., 2010), the most popular 
one is to simply choose the SNP in the gene region whose P value is the smallest and  
use the P value to represent the significance level of the gene (Wang et al., 2007, 2009). 
This way of obtaining gene-wise P values has been shown to be sensitive in many studies 
(Jia et al., 2010; Wang et al., 2007). 

In the gene set analysis of GWAS datasets, investigators often use gene-wise P values 
of the genes mapped in the same pathway to detect the enriched (joint) genetic signal  
at the pathway level. Although the smallest-P-value method is effective to represent 
gene-wise P value and it is easy to implement, there are several issues in this method that 
may introduce biases for estimating gene-wise P values; such biases have been frequently 
ignored in previous studies. For example, assuming that SNPs are evenly distributed 
across the genome, a long gene is expected to have more SNPs included in a GWAS 
dataset and, thus, has a higher chance to have significant markers – here significant 
markers denote small nominal P values (e.g., P < 0.05 or P < 0.01) from the GWAS 
dataset. In the real experiments, genes having more SNPs included in the commercial or 
custom microarray genotyping chips (e.g., Affymetrix and Illumina chips) are expected  
to have better chance to identify significant SNPs; and such genes are generally longer 
than the others. Another issue that further complicates the bias is the local Linkage 
Disequilibrium (LD) structure, which implicitly determines the ‘effective’ SNPs or 
independent SNPs for each gene, rather than the absolute number of SNPs per gene. 
Thus, the chance of a gene to be related to a significant SNP is not only related to its 
length and the number of SNPs included in the chips, but also the local LD environment 
(Holmans et al., 2009; Jia et al., 2011b). 

In most GSEA, gene length biases are typically adjusted by permutation data, which 
is generated by swapping the case and control labels in the original genotyping data. 
However, this process is computationally intensive and time consuming. Since each  
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of the available GSEA methods has its advantages and disadvantages, an efficient way 
would be to assess the gene length bias in advance to determine its effect, and then select 
the appropriate approach accordingly to avoid repeating try-and-error processes. 

In this study, we propose a method to estimate the gene length bias from any GWAS 
dataset, aiming to provide pre-analysis assessment of potential biases and, subsequently, 
to help the investigators determine which method would be appropriate in their gene set 
(e.g., pathway) enrichment analysis of the GWAS dataset. We propose to use the 
summary GWAS data to perform genome-wide resampling and estimate the background 
P value distribution for a query gene (i.e., any gene from the human genome and included 
in the GWAS dataset). For complex diseases that long genes are expected to be 
commonly involved, this evaluation is valuable to help the investigators select 
appropriate algorithms. For example, neurodevelopmental genes, which tend to be longer 
than other human genes, have been commonly implicated in psychiatric disorders, under 
a hypothesis of neutro-physiopathology hypothesis (Sun et al., 2010). Since our method 
does not rely on permutation, it is computationally efficient. We developed a computer 
program and made it freely available for the investigators for the assessment of gene 
length biases. 

2 Materials and methods  

2.1 GWAS datasets 

We used the GWAS dataset for schizophrenia from the Genetic Association Information 
Network (GAIN) (Manolio et al., 2007). GAIN is a public–private partnership of the 
Foundation for the National Institutes of Health and has funded several GWA studies 
such as schizophrenia (Shi et al., 2009) and major depression disorder (Sullivan et al., 
2009). The schizophrenia GWAS data was available in dbGaP and was approved for our 
use by the GAIN DAC through the National Human Genome Research Institute. The data 
was genotyped using the Affymetrix Genome-Wide Human SNP 6.0 array. We used only 
unrelated European ancestry samples. The following criteria for inclusion of individuals 
and markers were performed: 

• individual samples were removed if the missing genotype rate was >5% 

• SNPs were excluded if the missing genotype rate were >5%, or Minor Allele 
Frequency (MAF) <0.05. 

After the quality control, there were 1158 schizophrenia cases and 1378 controls and 
~651,000 SNPs that were used in this analysis. 

2.2 Statistic tests 

We used Cochran-Armitage Trend test to compute the significance of association of  
each SNP with schizophrenia. According to previous studies, there was no significant 
stratification found in the GAIN samples of European ancestry (Shi et al., 2009).  
The genomic control inflation factor of this dataset was 1.07, further confirming the data 
quality. 
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2.3 Gene coordinates and gene length data 

Gene coordinate information was extracted using the ‘seq_gene.md’ file downloaded 
from the NCBI ftp site (ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/mapview/, build 36.3). 
We used only protein-coding genes, as annotated in the file “Homo_sapiens.gene_info” 
that was also available at the same NCBI ftp site. A total of 19,739 protein-coding genes 
were identified and their corresponding coordinates in the human assembly were used  
for mapping SNPs in the GAIN GWAS dataset. 

2.4 Evaluating gene length biases in individual genes using random genomic 
intervals 

We propose a strategy to evaluate the gene length bias for any protein-coding gene in the 
human genome. Figure 1 illustrates our strategy. A SNP is mapped to a gene if it is 
located within the gene region, or within 20 kb immediate upstream or downstream of the 
gene. For analysis methods that involve gene-level data, a summarised P value for each 
gene is necessary to represent the gene. We use the SNP having the smallest P value in 
the gene for this purpose. Although there are several other ways to represent the 
summarised P values on the gene level (Jia et al., 2010; Luo et al., 2010; Wang et al., 
2007), the smallest-P-value strategy is the most commonly used one in GSEA and has 
been shown to be sensitive compared to other methods such as the Simes’ method  
(Wang et al., 2007). 

To evaluate whether the summarised P value of a gene is biased towards its gene 
length, we propose to use a resampling based method across the whole human genome. 
The strategy has the following three steps. 

Step 1. Identify accessible genomic regions. As most GWA studies are conducted on 
commercial genotyping chips, the SNPs that can be genotyped are limited by the applied 
platform and are generally distributed on each chromosome excluding the telomere and 
the centromere regions. We thus define the regions that can be genotyped as “accessible 
genomic regions”, which will serve as the “genomic region pool” for resampling.  
For each specific GWAS dataset, the accessible genomic regions might differ slightly 
after quality control. This may be implemented by different exclusion criteria in different 
case studies. The final accessible genomic regions are expected to have up to 46 regions 
for the human genome, with each chromosome being separated into two possible 
disconnected regions by their chromosomal arms (p and q arms). However, the p arms of 
some chromosomes might be too short to be a practical accessible genomic region. 
Specifically in this study, we demonstrated our strategy by using the GAIN GWAS 
dataset for schizophrenia, which was generated by the Affymetrix Genome-Wide Human 
SNP 6.0 array. In this array, no SNP markers are found in four chromosomes’ p-arms 
(chromosomes 13, 14, 15, and 22). As a result, there are in total 42 accessible regions that 
could be served as the resampling pool. 

Step 2. Generation of random genomic intervals for a specific gene. Given a query gene 
with length l and a summarised P value (Preal), to assess whether the Preal value is biased 
towards its gene length, we randomly generate genomic intervals with the same length of 
the gene from the accessible genomic regions, and then compute a summarised P value 
for each interval in the same way as used for the real case. Specifically, a genomic 
interval is generated by first randomly selecting a region out of the accessible genomic 
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regions, followed by randomly selecting an interval in the region with the length l plus an 
extended 20 kb in both ends – a total of l + 40 kb, as it is done for the real case of each 
gene. These resampling intervals thus form a background distribution of P values for the 
query gene. 

Step 3. Empirical P value – proportion of more significant intervals than the real case. 
For the resampling intervals, we count the number of intervals that have more significant 
summarised P values than the real case and divide it by the number of resampling 
intervals that successfully cover SNPs in the GWAS dataset, i.e.,  

interval real{ }
Prop 100% ,

{effective resampling}
P P<

= ×
#

#
 

where Pinterval is the summarised P value for each interval, Preal is the summarised P value  
for the gene, and the effective resampling denotes the random resampling intervals after 
excluding those that fall in desert regions without covering any GWAS SNPs. 

Figure 1 Work flow to assess the gene length biases in a GWAS dataset. The details are provided 
in the text (see online version for colours) 

 

2.5 Evaluating gene length biases in gene sets 

We further evaluate gene length biases in a set of genes, rather than individual genes.  
We demonstrate this strategy by using the pathways downloaded from the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database (Kanehisa et al., 2008), a 
popularly used pathway resources in GWAS pathway analysis. There are 214 pathways 
used in our analysis (as of September 7, 2010). For each pathway, the gene length 
distribution is explored and the median value of all gene lengths within a pathway is 
computed for comparison of these KEGG pathways. We select one representative 
pathway with many long genes and examine its gene length bias using the random 
genomic interval method.  
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3 Results and discussion 

3.1 Implementation of gene length bias evaluation strategy 

The details of the gene length bias evaluation method were provided in Section 2.4. 
Below we presented a pseudo-code to further illustrate the algorithm and then we 
implemented our random genomic interval method into a computer program that is 
publicly available for the user. 
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Briefly, the GWAS dataset is initialised by coordinating the accessible genomic regions 
and the genes inputted by the user. Then, a random interval generator is formulated  
to generate genomic intervals by a given length. For each query gene, an iteration of 1000 
times of resampling is executed, each of which creates a random interval by the generator 
and then assigns the smallest P value of the SNPs mapped in the interval (Figure 1). 
Finally, the proportion is computed for each query gene by summarising the effective 
rounds that successfully cover SNPs. Note that the ‘effective’ rounds may not be exactly 
1000 times because in some cases, an interval may fall in desert regions without covering 
any SNPs in the GWAS dataset. This is reasonable and reflects the real design of the 
GWAS chips, in which there are many genes that are not covered. 

We executed the above pseudo-code by JAVA, an object-oriented programming 
language. The computer program is freely available on our website: http://bioinfo.mc. 
vanderbilt.edu/software.html 

3.2 Gene length distribution 

Of the ~20,000 human protein-coding genes, we first explored the length distribution.  
As expected, the human gene lengths varied greatly – ranging from 0.1 kb to 2300 kb  
– and they were heavily screwed towards the right tail (i.e., long genes) (data not shown). 
This observation indicates that long genes are un-equivalently distributed among all  
the human genes. In summary, the longest 10% of genes accounted for 54.4% of total 
length of the human genes. We thus plotted the distribution of logarithm transformed 
gene length in the human genome. The distribution is shown in Figure 2. 

Figure 2 Length distribution of protein-coding genes in the human genome. X-axis is  
log10(gene length) and Y-axis is the number of genes (see online version for colours) 

 

3.3 Evaluating biases in individual genes: short genes, intermediate genes  
and long genes 

We selected four representative genes to examine the influence of gene length bias in 
those genes’ summarised P values. These four genes are: 
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• one gene randomly selected from the lower 25% quantile in gene length distribution 
(Figure 2), representing short genes 

• two genes from the middle of the distribution (gene length within 25–75% quantile 
of the distribution), representing intermediate genes 

• one gene from the upper 25% quantile, representing long genes. 

We performed resampling analysis as in Section 2.4, according to their gene lengths. 
As expected, the long gene had the highest proportion of resampling intervals, 

indicating that they had more significant summarised P values than the real cases 
(Prop = 97.03%), while for the short and intermediate genes, the proportion of more 
significant intervals were <70% (Figure 3). The results revealed that for a long gene 
region, it tends to cover SNPs with more significant P values. 

Figure 3 Assessing gene length biases in four representative human genes. Y-axis represents 
frequency of random genomic intervals having the same length of the gene selected.  
X-axis represents –log(P), where P is the smallest P value within each of the random 
interval: (A) A short gene; (B) and (C) Two intermediate genes and (D) A long gene 
(see online version for colours) 
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Figure 3 Assessing gene length biases in four representative human genes. Y-axis represents 
frequency of random genomic intervals having the same length of the gene selected.  
X-axis represents –log(P), where P is the smallest P value within each of the random 
interval: (A) A short gene; (B) and (C) Two intermediate genes and (D) A long gene 
(see online version for colours) (continued) 

 
(C) 

 
(D) 

3.4 Evaluating biases in gene sets: KEGG pathways  

We next examined the gene length distribution of all the KEGG pathways. We found 
great variation among KEGG pathways in term of gene length distribution and the 
median values of all gene lengths in the pathways. Among the 214 KEGG pathways, their 
median values of gene lengths varied from 947 bp to 141,700 bp, with the median being 
28,140 bp. 

To better present the trend, we plotted the bottom 10% pathways that had the smallest 
median values of gene length, as well as, the top 10% pathways that had the largest 
median values (Figure 4). The pathway “biotin metabolism (hsa00780)”, which had  
the largest median value of gene length, contained only two genes (HLCS and BTD)  
and was very likely driven by the long gene HLCS. The other long-gene pathways 
included several neuron related pathways such as axon guidance (hsa04360), long-term 
potentiation (hsa04720) and dorso-ventral axis formation (hsa04320), consistent with the 
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previous knowledge that neuron-related genes tend to be long (Sun et al., 2009). This also 
indicates that for complex diseases that neuron-related genes are expected to be involved, 
caution needs to be taken to estimate the gene length bias before any gene set based 
analysis of GWAS dataset (Jia et al., 2011b; Sun et al., 2009). 

We took the axon guidance pathway (hsa04360) as an example to demonstrate  
the gene length bias. There were 129 genes annotated to this pathway according to the 
KEGG database, 49 of which had their gene length located within the top 10% gene 
length distribution of all human genes. Thus, a substantial portion of the genes in this 
pathway is long. We performed the random interval estimation for each of these genes 
and found that 18 out of the 49 long genes had high proportion (Prop > 70%) of randomly 
selected intervals having P values (Pinterval) smaller than the real case (Preal). This result 
clearly indicated that these genes are biased towards their gene length. 

Figure 4 Gene length distribution of the top 10% shortest and top 10% longest KEGG pathways 
in term of their median gene length (see online version for colours) 

 

4 Conclusion 

As several hundreds of GWAS datasets have been made available, and many more are 
being generated, gene set based analysis, especially pathway based analysis, of GWAS 
datasets is emerging rapidly as a powerful approach to uncovering genetic signal for 
many complex diseases or traits. So far, investigators often select the smallest P value 
among all the SNPs in a gene region to represent gene-wise association significance,  
and then test enriched association signal in a gene set by combing gene-wise P values of 
the gene set. This study addresses a potential strong bias in such an approach.  
We examined the gene length biases in all human protein-coding genes and in the KEGG 
pathways. We proposed a strategy – random genomic interval analysis – to assess the 
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gene length bias in GWAS dataset through resampling in the accessible genomic regions 
and generating random genomic intervals to estimate the background distribution of  
gene-wise P values. We demonstrated the strategy in a schizophrenia GWAS dataset  
and showed that pathways with high proportion of long genes tend to be biased towards  
gene length. This will provide insights for researchers to choose appropriate methods  
in follow up analysis. We developed a computer program and made it publicly  
available for the investigators to assess gene length biases for both individual genes and 
gene sets. 
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