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Unlike the typical analysis of single markers in genome-wide association studies (GWAS), we
incorporated Gene Set Enrichment Analysis (GSEA) and hypergeometric test and combined
them using Fisher's combined method to perform pathway-based analysis in order to detect
genes' combined effects on mediating schizophrenia. A few pathways were consistently found
to be top ranked and likely associated with schizophrenia by these methods; they are related to
metabolism of glutamate, the process of apoptosis, inflammation, and immune system (e.g.,
glutamate metabolism pathway, TGF-beta signaling pathway, and TNFR1 pathway). The genes
involved in these pathways had not been detected by single marker analysis, suggesting this
approach may complement the original analysis of GWAS dataset.
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1. Introduction

Genome-wide association studies (GWAS) have become a
powerful approach to searching for common genetic variants
which increase susceptibility to complex diseases or traits. So
far, the search for common susceptibility variants has been less
successful in schizophrenia than in many other complex
diseases/traits (O'Donovan et al., 2009). Among several recent
schizophrenia GWA studies, essentially no marker or gene has
achievedgenome-wide statistical significance level in any single
study (Purcell et al., 2009; Shi et al., 2009; Stefansson et al.,
2009; Sullivan et al., 2008), although combining data from
several studies suggested the MHC region on chromosome 6p
anda fewother genes (e.g.,NRGN and TCF4)might be promising
for future validation (Purcell et al., 2009; Shi et al., 2009;
Stefansson et al., 2009). Although it is commonly accepted that
schizophrenia may result from many genes or genetic variants,
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each of which makes a small risk contribution, and through
interactions with each other or environmental factors to cause
this disorder, the genetic signal has always been examined at
single marker level in the schizophrenia GWA studies.

Here we examined the association signal of GWAS
markers in a set of genes categorized by biological pathways,
assuming a complex disease such as schizophrenia may result
from a number of genes which disrupt one or more pathways.
To reduce bias, we applied two statistical methods to identify
overrepresented pathways in a single GWAS dataset. The first
method is Gene Set Enrichment Analysis (GSEA), which was
initially developed for microarray gene expression analysis
(Subramanian et al., 2005) but was recently adapted to GWA
studies. The second method is the hypergeometric test which
identifies pathways overrepresented with significant genes.
We identified 4 pathways that had P value b0.05 by both
methods. We further combined the P values using Fisher's
method (Fisher, 1932) to assess the consistency of evidence.
Importantly, these pathways are related to glutamate
metabolism, the process of apoptosis, inflammation, and the
immune system, implicating their involvement in the under-
lying pathology of schizophrenia.
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2. Methods and materials

2.1. GWAS data preparation

We used GAIN (Genetic Association Information Network)
GWAS dataset for schizophrenia sincemost other schizophrenia
GWASdatasets (e.g., ISCGWAS)havenotbeenpublicly available
to general investigators (Manolio et al., 2007). The data access
was approved by the GAIN DAC through National Human
Genome Research Institute and was recently used in our
candidate gene selection for schizophrenia (Sun et al., 2010;
Sun et al., 2009). The data was extracted from the NCBI dbGaP
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=gap).
Unrelated European ancestry samples (1158 schizophrenia
cases and1378controls)wereused in this analysis.Weexcluded
SNPs whose missing genotype rate was N0.1, minor allele
frequency (MAF) was b0.01, or Hardy–Weinberg equilibrium
(HWE) was ≤0.001. This resulted in a total of ~725,000 SNPs.
According to previous analysis, there was no significant
stratification found in the GAIN samples of European ancestry
(Shi et al., 2009); thus,weusedbasic allelic test (chi-square, 1df)
to compute the association of each SNP with schizophrenia.
Supplementary Fig. 1 provides the corrected quantile–quantile
(Q–Q) plot of all the SNPs we used. All P values were corrected
for λ. The red line indicates the expectation if the observed
distribution did not deviate from the expected distribution.

Wemapped a SNP to a gene if it was locatedwithin the gene
or 20 kb immediatelyupstreamordownstreamof the gene. The
most significant SNP of the gene was chosen to represent the
association of the gene in the follow up analysis. Canonical
pathways were downloaded fromMSigDB (Subramanian et al.,
2005), which includedmajor pathways from the several public
resources such as KEGG (http://www.genome.jp/kegg/) and
BioCarta (http://www.biocarta.com/genes/index.asp) data-
bases. To avoid stochastic bias or testing too general biological
process, we discarded pathways that contained less than 10 or
more than 250 genes. After this SNP-gene and gene-pathway
mapping process, we had 369,808 SNPs mapped to 19,896
protein-coding genes, which were involved in 511 biological
pathways.

2.2. Gene Set Enrichment Analysis (GSEA)

The original GSEA algorithmwas introduced in Subramanian
et al. (2005). Briefly, it is a weighted Kolmogorov–Smirnov-like
test to examine if two datasets differ significantly. There are
three main steps, as described in Wang et al. (2007).

1) For each SNP, we first calculated its χ2 statistic value by
a case-control basic allelic association test and then selected
the SNP that had the largest χ2 value in a gene region
(denoted as r) to represent the extent of association of gene
with the disease (i.e., schizophrenia). We next sorted all the
genes by their χ2 value so that genes with stronger asso-
ciation were ranked on the top of the list.

2) For each pathway (i.e., gene set S), a running sum
statistic (enrichment score, ES) was computed according to
the following formula:

ESðSÞ = max
1≤i≤N

∑
gj∈S; j≤i

jrjjm
NR

− ∑
gj∉S; j≤i

1
N−NH

( )
where N is the total number of genes included in a GWA
study, i is the position in the gene listN, j is the position before
i in the gene list N, rj is the χ2 statistic value of gene j, g
denotes a gene, NR = ∑

gj∈S
jrjjm, and NH is the number of genes

in a pathway of interest. Of note, when m equals to 0, ES(S)
reduces to Kolmogorov–Smirnov test. We set m=1, as used
in the original GSEA application, to weigh the genes by their
association level (rj). ES measures the maximum deviation of
the pathway departing from random walk (Subramanian
et al., 2005; Wang et al., 2007).

3) Permutation was performed on the original GWAS data
by swapping the labels of cases and controls while maintaining
the same case/control ratio. In this way, the structure between
SNPs andgenes canbemaintainedwhile statusofphenotypes is
randomized. This step aims to test if anenrichedpathway is also
significantly associated with the disease and makes ES(S) of
different pathways comparable.We performed 10,000 times of
permutation. For eachpermutation (π),we calculated ES(S) and
denoted as ES(S, π). Then, for each pathway, the original ES(S)
was normalized according to the 10,000 ES(S, π), which
generated an NES(S) by

NES =
ES Sð Þ−mean ES S;πð Þð Þ

sd ES S;πð Þð Þ :

In this way, for each pathway, ES(S) and ES(S, π) are
compared in the same background distribution in terms of
pathway size, gene length, SNP density, etc. Specifically, this
approach effectively avoids the gene length bias from brain- or
neuro-related genes, which tend to be large. In normalization
process, comparison of ES(S) and ES(S, π) is based on the same
gene set; thus there is no bias towards gene length or SNP
density. The resultant NES(S) were normally distributed and
comparable to each other with no bias, especially for pathways
with long genes and having dense number of SNPs. A nominal P
was computed for each pathway by counting the number of
permutations that had ES(S, π) greater than or equal to the real
case and then divided by the total number of permutations.

2.3. Hypergeometric test

To test if a gene set is overrepresented in the GWAS dataset
by using hypergeometric distribution, we first defined “inter-
esting genes”. A gene was selected to be of interest if any GAIN
marker mapped to the gene had Pb0.01. This P-value cutoff is
arbitrary but has appeared to be useful as a first step. Assuming
that 1) L is the total number of genes considered in a genome
(i.e., represented by GWAS data and having pathway annota-
tions) andM is the number of interesting genes out of L and, 2)
for a gene set (i.e., a pathway), S is the number of genes within
L and x is the number of genes within M, P value based on
hypergeometric distribution could be computed as:

P = ∑
S

x=g

S
x

� �
L−S
M−x

� �
L
M

� � :

This P value indicates the probability of observing at least
g genes in the current gene set. Similarly to the GSEA, we
performed permutation, estimated nominal P values, and
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performed multiple testing correction using Benjamini–
Hochberg method (Benjamini and Hochberg, 1995).

2.4. Fisher's method

Fisher'smethod to combinemultiple P values fromdifferent
tests is

X2 = −2 ∑
k

i=1
ln Pi

where Pi is the P value for the ith test and k is the total numberof
tests (Fisher, 1932). X2 has a chi-square distribution with 2 k
degrees of freedom. We used Fisher's method to combine the
nominal P values for each pathway computed by each method
to identify pathways that show consistent significance by both
methods.

3. Results and discussion

We found 6 pathways having significant nominal P values
(Pb0.05) by the GSEAmethod, and 10 by the hypergeometric
test. The following four pathways had nominal P values b0.05
by both methods: CARM_ER pathway (BioCarta), glutamate
metabolism (BioCarta), TNFR1 pathway (BioCarta), and TGF
beta signaling pathway (KEGG). Table 1 lists these overrep-
resented pathways ordered by GSEA NES value. There were
additional 7 pathways having nominal P value b0.05 by either
method (Supplementary Table 1). When we used Fisher's
method to combine the nominal P values of GSEA and
hypergeometric test, we found 9 out of these 11 pathways
had combined P value b0.05 and one (glutamatemetabolism)
passed Benjamini–Hochberg multiple testing correction
(Supplementary Table 1). Overall, the results based on these
methods were consistent.

Specifically, the glutamate metabolism pathway had a
nominal P value 0.004 by GSEA, a nominal P value 0.004 by
hypergeometric test, a Fisher's combine P value 1.75×10-4, and
aBenjamini–Hochberg correction Pvalue 0.018 (Supplementary
Table 1). This pathwaydirects glutamatemetabolism, apathway
that has been linked to schizophrenia based upon the ability of
NMDA receptor antagonists such as phencyclidine, ketamine
and MK-801 to mimic the cognitive impairment and some
symptomsof schizophrenia. Glutamate is the primary excitatory
neurotransmitter in the central nervous system (CNS). Gluta-
mate can be synthesized from glutamine by glutaminase (GLS)
and can be metabolized to GABA by glutamate decarboxylase 1
(GAD1). GABA, the main inhibitory neurotransmitter has also
been identified as a susceptibility factor for schizophrenia; it can
be further metabolized by 4-aminobutyrate aminotransferase
Table 1
Pathways overrepresented in the GAIN GWAS dataset (both nominal P from GSEA

Pathway # Genes GSEA

# Genes on chip ES

Glutamate metabolism (BioCarta) 24 24 0.567
TGF-beta signaling pathway (KEGG) 90 88 0.405
TNFR1 pathway (BioCarta) 29 28 0.463
CARM_ER pathway (BioCarta) 30 25 0.524

GSEA: gene set enrichment analysis. In the GSEA method, the NES (normalized enr
(ABAT) and aldehyde dehydrogenase 5 family, member A1
(ALDH5A1). Additionally, glutamate can be converted to
glutathione (GSH) by glutamate-cysteine ligase, catalytic sub-
unit (GCLC). Both genetic and functional studies have revealed
an impairment in glutathione synthesis might be associated
with schizophrenia (Gysin et al., 2007). Among the 24 genes in
this pathway examined in the GAIN GWAS, ten had P value
b0.05 based on the original association analysis (Table 2). The
gene-wise P values, measured by the most significant SNP in
each gene region, were within a range of 0.002–0.037. The
similar P value ranges were observed in other three top ranked
pathways (Supplementary Table 2), suggesting that multiple
moderate-risk genes may interact with each other to increase
risk of complex disease. Interestingly, the informative genes, as
defined by the gene-wise P value b0.01, in this overrepresented
pathway included GLS, GCLC, CPS1, ALDH5A1, GMPS, and GAD1.

Three pathways related to apoptosis, inflammation, and
the immune system were identified overrepresented by both
GSEA and hypergeometric methods: the TGF-beta pathway
(nominal PGSEA=0.034 and nominal Phypergeometric=0.009),
the TNFR1 pathway (nominal PGSEA=0.042 and nominal
Phypergeometric=0.030), and the TOB1 pathway (nominal
PGSEA=0.070 and nominal Phypergeometric=0.036). For the
TOB1 pathway, while its nominal GSEA P value was slightly
larger than 0.05, its nominal Phypergeometric was 0.036 and
Fisher's combined P value was 0.018. Therefore, we cited it
together with the TGF-beta and TNFR1 pathways here. The
TGF-beta signaling pathway is involved in many cellular
processes including neuronal protection against both apo-
ptosis and excitotoxicity (Vivien and Ali, 2006). The TNFR1
signaling pathway controls the binding of TNF-alpha to the
TNF receptor 1 and triggers cell apoptosis and, thus, neuronal
cell death. TNF-alpha, a proinflammatory cytokine, is in-
volved in several CNS functions (e.g., synaptic scaling
(Stellwagen and Malenka, 2006) and glutamatergic synaptic
transmission (Beattie et al., 2002). Importantly, this result
supported recent finding of involvement of the immune
system in schizophrenia by combined GWA studies (Purcell
et al., 2009; Shi et al., 2009; Stefansson et al., 2009). Informative
genes included MYC, SMAD5, BMP7, TGFB1, CREBBP, IFNG,
THBS2, PPP2R2B, ZFYVE16, ACVR1B, E2F4, SMAD9, BMP5,
CDKN2B, TGFBR2, and SMAD6. Supplementary Fig. 2 depicts
theTGF-beta signalingpathwaybyhighlighting the informative
genes.

It is also worth noting the androgen and estrogen metab-
olismpathway,whichhad the smallest nominal P value (0.003)
in GSEA, the smallest P value (0.003) in Fisher's method, and
nearly passed Benjamini–Hochberg multiple testing correction
(PBH=0.088) (Supplementary Table 1). Estrogen may be
protective in schizophrenia as men develop schizophrenia at
and hypergeometric testb0.05).

Hypergeometric test

NES Nominal P # Interesting genes Observed P Nominal P

2.586 0.004 6 0.007 0.004
1.845 0.034 14 0.027 0.009
1.649 0.042 5 0.054 0.030
1.757 0.041 5 0.033 0.045

ichment score) is the most informative measure.



Table 2
Genes having SNPs reaching Pb0.05 in glutamate metabolism pathway
(BioCarta) in the GAIN GWAS dataset.

Gene
symbol

SNP Chromosome Position Region P

GLS rs1546646 2 191536841 3'UTR 0.002
GCLC rs7758764 6 53504121 Intron 0.004
CPS1 rs4233981 2 211237623 Intron 0.005
ALDH5A1 rs7770041 6 24655330 Downstream 0.005
GMPS rs7651038 3 157134981 Intron 0.005
GAD1 rs10191129 2 171396839 Intron 0.007
CAD rs6759518 2 27340099 Downstream 0.011
GAD2 rs12243037 10 26564380 Intron 0.013
GLUD1 rs11202308 10 88789590 Downstream 0.014
ABAT rs12149040 16 8717353 Intron 0.037
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anearlier age andwith greater severity thanwomen (Palha and
Goodman, 2006; Rao and Kolsch, 2003). Interestingly, β-
estradiol links to TNF and insulin (Guo et al., 2009), providing
further support for the hypothesis that the immune system and
apoptosis are important in schizophrenia pathophysiology.

Therewere a few recent reports of gene set based analysis in
psychiatric GWA studies. Using SNP ratio test (SRT) on the ISC
GWAS as the discovery dataset and GAIN GWAS as the
validation dataset, O'Dushlaine et al. (2010) found that five
pathways were significantly associated with schizophrenia;
they were glycan structures biosynthesis 1, cell cycle, SNARE,
cell adhesion molecules (CAMs), and tight junction. One of
these pathways (CAMs) could pass multiple testing correction
based on the validation GWAS dataset. These pathways were
not found significant in our GSEA or hypergeometirc test.
O'Dushlaine et al. also found the CAM pathway was significant
withbipolardisorder (P=0.026)using theWelcomeTrust Case
Control Consortium (WTCCC) bipolar disorder dataset. In
another study, Holmans et al. (2009) performed a Gene
Ontology (GO) analysis of a bipolar disorder meta-analysis
dataset (including the WTCCC data) and identified a list of
significant GO terms. Almost all those GO terms (e.g., hormone
activity, transcription factor activity) were general and not
specifically related to neurodevelopment, as commonly hy-
pothesized for psychiatric disorders. The overall inconsistent
findings might be due to the complex genetic structure of the
diseases, different datasets, or different statistical methods.
Althoughcautionneeds tobe taken in these results, the gene set
analysis, especially pathway-based, is potentially effective for
detecting genetic signal beyond the typical single marker
analysis in the original GWA studies.

In this study, we primarily used GSEA and hypergeometric
test to analyze the GWAS dataset. These two methods have
been used in the analysis of both microarray gene expression
and GWAS datasets. There are some other available methods
such as SUMSQ (Dinu et al., 2007) and MAXMEAN (Efron and
Tibshirani, 2007) that have been reported with better
performance (Tintle et al., 2009); however, it seems not
convenient in linking them to PLINK for permutation analysis,
which is computationally intensive. Such methods can be
applied in future work.

In summary, we examined GWAS data from the GAIN study
to identify genetic associations with schizophrenia at the
pathway level rather than the SNP level. The genes involved
in these pathways had not been detected by single marker
analysis. Confirmation of these genes in replication studies
would warrant more extensive applications of pathway-based
approaches in the studies of complex disorders.
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