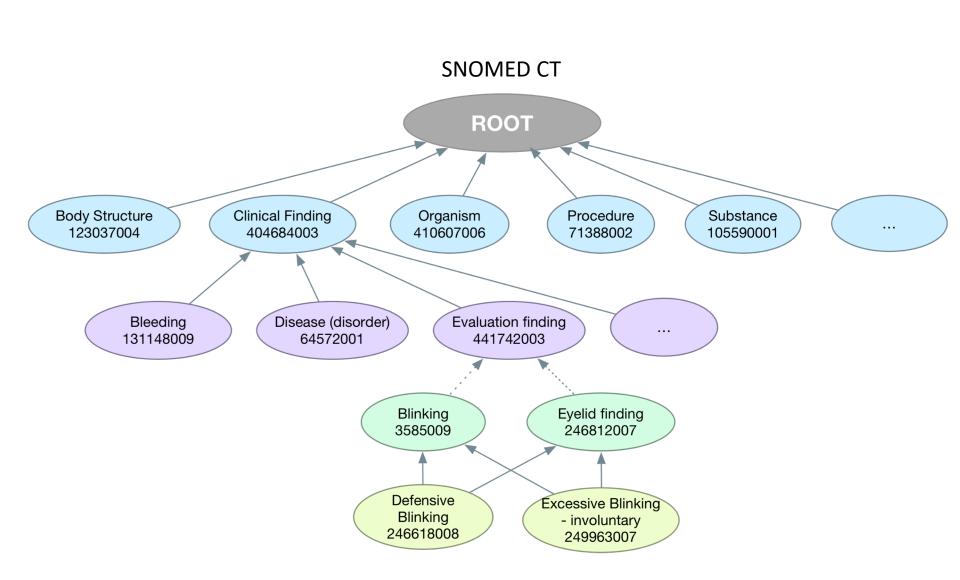
CS 626 Large Scale Data Science

Lecture 6 – MapReduce Examples

Licong Cui licong.cui@uky.edu

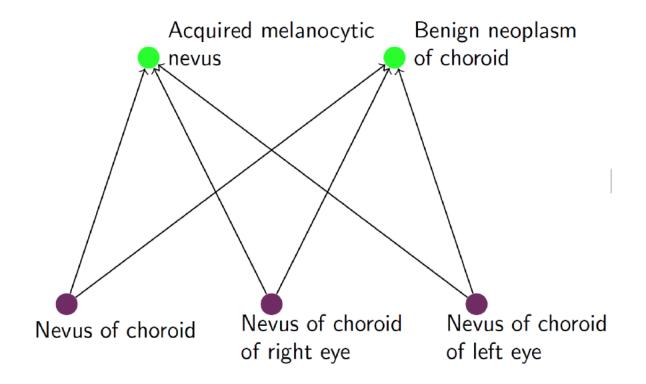
Biomedical Ontology Quality Assurance (OQA)

Outline

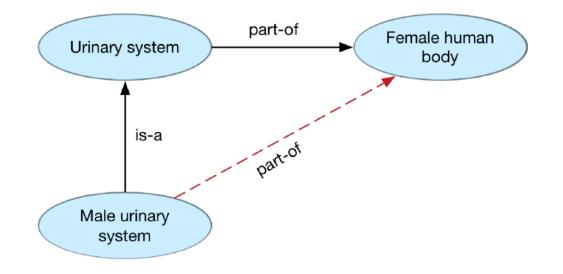

- ✓ Biomedical Ontology Quality Assurance
 - Cross-Ontology Hierarchical Relationship Examination (COHeRE)^[1]
 - Non-lattice-based Auditing^[2,3]

[1] **Cui L**. COHeRE: Cross-Ontology Hierarchical Relation Examination for Ontology Quality Assurance. *AMIA Annual Symp Proc* 2015, pp. 456-465.

[2] **Cui L**, Tao S, Zhang GQ. Biomedical Ontology Quality Assurance Using a Big Data Approach. **ACM** *Transactions on Knowledge Discovery from Data*, 2016;10(4):41.

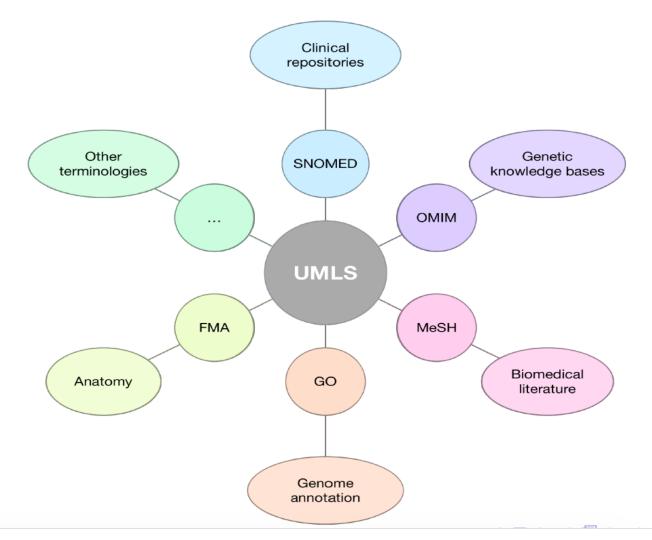

[3] **Cui L**, Zhu W, Tao S, Case JT, Bodenreider O, Zhang GQ. Mining Non-Lattice Subgraphs for Detecting Missing Hierarchical Relations and Concepts in SNOMED CT. *Journal of the American Medical Informatics Association*, 2017;24(4): 788-798.

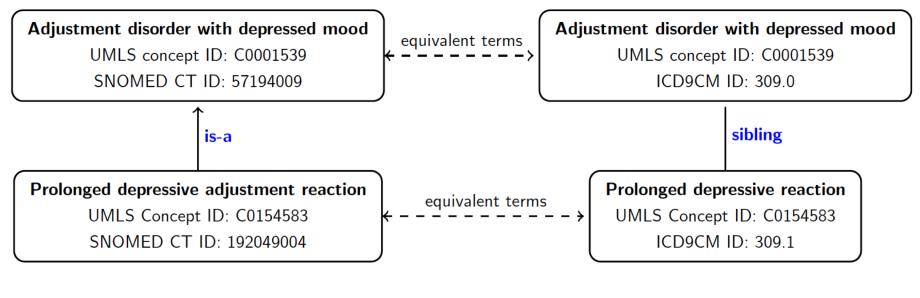
Ontology


Ontology Quality Assurance Needs

A Non-lattice Subgraph Example in the SNOMED CT⁴

Ontology Quality Assurance Needs (cont.)

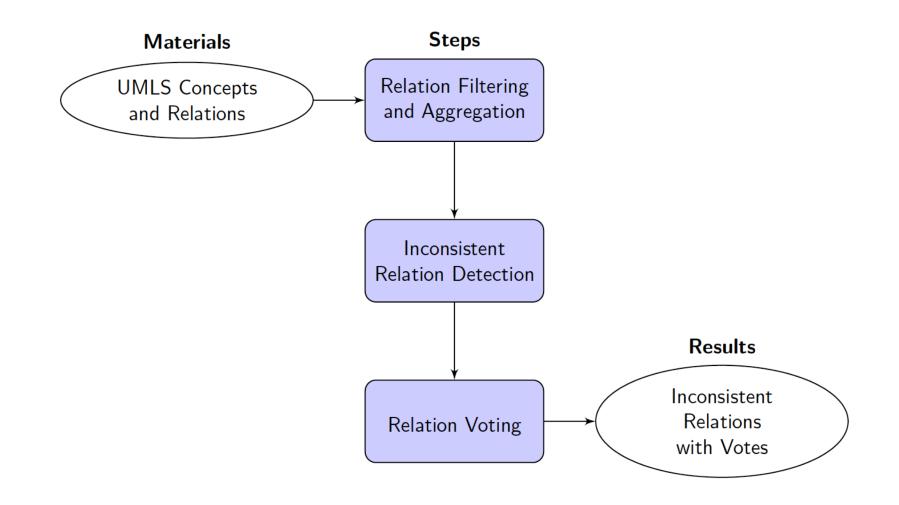

Example in the Foundational Model of Anatomy (FMA)



COHeRE: Cross-Ontology Hierarchical Relationship Examination

Unified Medical Language System (UMLS)

- Over 150 source vocabularies
- Over 2.8 million concepts and 60 million relations



SNOMED CT

ICD9CM

Overview of the Proposed Method COHeRE

• UMLS 2014AB release

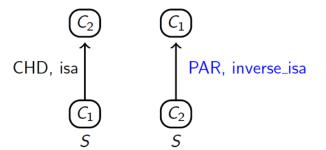
• A subset of source vocabularies

Concepts

- Concept Unique Identifier (CUI) e.g., C0027051
 - Heart attack
 - Infarction of heart
 - Myocardial infarction
 - Cardiovascular Stroke

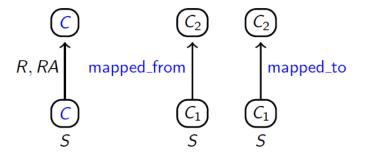
Acronym	Vocabulary Name
ATC	Anatomical Therapeutic Chemical Classification System
CPT	Current Procedural Terminology
FMA	Foundational Model of Anatomy Ontology
GO	Gene Ontology
ICD10CM	International Classification of Diseases, 10th Edition
ICD9CM	International Classification of Diseases, Ninth Revision
MDR	Medical Dictionary for Regulatory Activities Terminology
MEDLINEPLUS	MedlinePlus Health Topics
MSH	Medical Subject Headings
MTH	UMLS Metathesaurus
NCBI	NCBI Taxonomy
NCI	NCI Thesaurus
NDFRT	National Drug File - Reference Terminology
OMIM	Online Mendelian Inheritance in Man
RXNORM	RxNorm Vocabulary
SNOMEDCT_US	US Edition of SNOMED CT
VANDF	Veterans Health Administration National Drug File

Relations


Relationships

Relationship (R)		Relationship attribute (RA) Examples			
SY	synonymy	same as, alias of			
CHD	has child relationship	is a, part of			
SIB	has sibling relationship	sibling in is a, sibling in part of			
RN	has a narrower relationship	tradename of, form of			
AQ	allowed qualifier	actual outcome of, modifies			
RO	has other relationship	measured by, measures			

(C₁, C₂, R, RA, S)
 e.g., (C3853287, C3853286, CHD, is a, SNOMEDCT_US)


- Relation filtering
 - Remove redundancy

 $(C_2, C_1, \text{PAR}, \text{inverse}_\text{isa}, S)$

• Filter relations

(C, C, R, RA, S) $(C_1, C_2, R, \text{mapped_from}, S)$ $(C_1, C_2, R, \text{mapped_to}, S)$

- Relation aggregation
 - $(C_1, C_2) \to (R_1, RA_1, S_1) | (R_2, RA_2, S_2) | \dots | (R_n, RA_n, S_n)$
 - Filter out multiply related concept pairs in a single source vocabulary

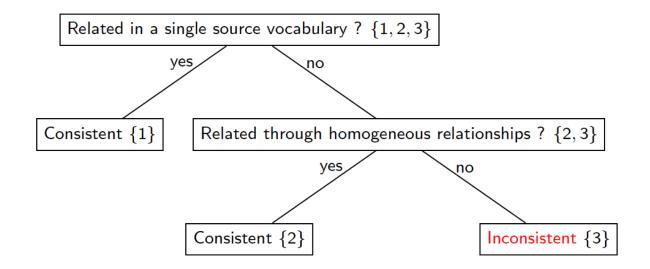
$$\begin{array}{ccc}
 & C_2 \\
R_1, RA_1 \\
C_1 \\
S_1
\end{array}$$

$$\begin{array}{c}
 & C_2 \\
\hline
 & R_2, RA_2 \\
\hline
 & C_1 \\
S_1
\end{array}$$

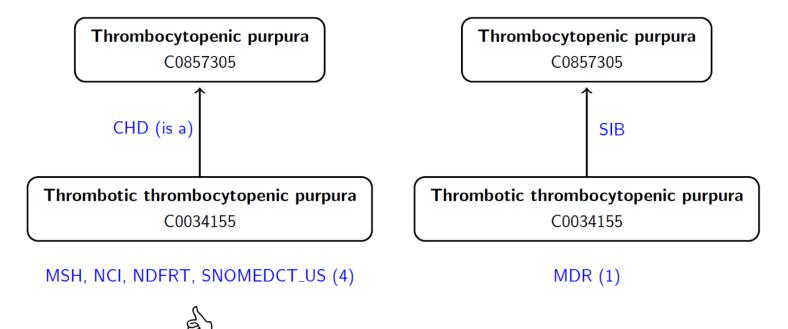
Relation Filtering and Aggregation Using MapReduce

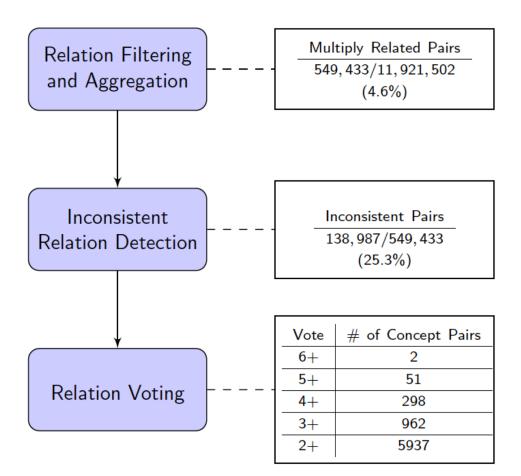
- MapReduce
 - Map:

• Reduce:


$$(C_1, C_2, R, RA, S) \xrightarrow{\text{filtering}} (C_1, C_2), (R, RA, S)$$

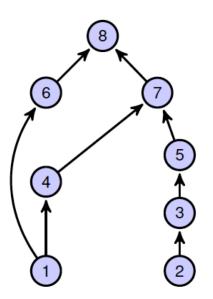
$$\{(C_1, C_2), (R_i, RA_i, S_i)\}$$

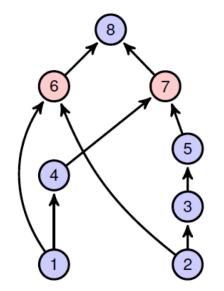

 \Downarrow aggregation


 $(C_1, C_2) \rightarrow (R_1, RA_1, S_1) \mid (R_2, RA_2, S_2) \mid \ldots \mid (R_n, RA_n, S_n)$

No.	Concept pair (C_1, C_2)	Relationships and source vocabularies $\{(R, RA, S)\}$
1	Arginine supplement (C3853287), Arginine and glutamine supplement (C3853286)	CHD, is a, SNOMEDCT_US
2	Hexosamines (C0019478) Fructosamine (C0060765)	CHD, null, MSH CHD, null, NDFRT
3	17-Oxosteroid (C0000167), Androstenedione (C0002860)	SIB, null, CPM CHD, null, MSH CHD, null, NDFRT

- Rank by votes
- Suggest top-ranked relationship with at least 2 votes

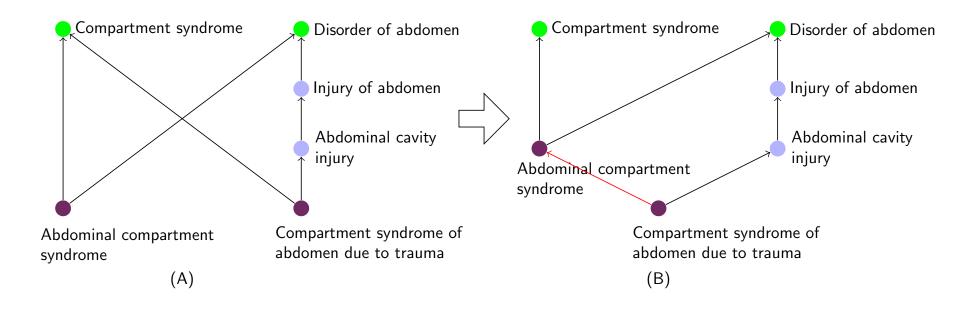




Non-lattice-based Auditing of SNOMED CT

Semilattice, Non-lattice

• An **upper semilattice** is a *partially ordered set* in which any two elements have a *unique minimal upper bound*.



Upper semilattice

Non-lattice

Example in SNOMED CT

Non-lattice Detection (I)

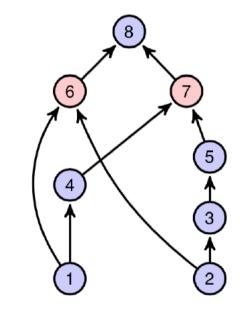
Given a poset (L, \leq) and $X \subseteq L$

• $^{\uparrow}X$ denotes the set of all common ancestors of X

 $\{a \mid \forall x \in X, x < a\}$

• $^{\uparrow}X$ represents its strict upper closure

 $\{a \mid \exists x \in X, x < a\}$

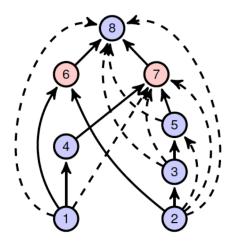

Non-lattice Detection (II)

Theorem: Let X be a set of pairwise incomparable elements of a poset L, with $|X| \ge 2$. We have

 $\operatorname{mub}(X) = {}^{\uparrow}\! X - {}^{\uparrow}\! ({}^{\uparrow}\! X).$

Special Case: Given a pair of incomparable elements *x* and *y*,

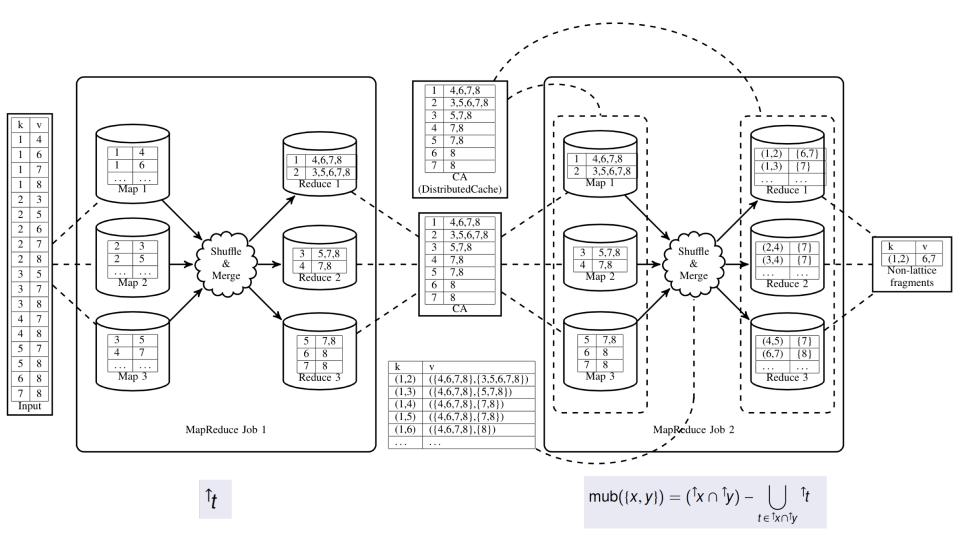

$$\mathsf{mub}(\{x,y\}) = (^{\uparrow}x \cap ^{\uparrow}y) - \bigcup_{t \in ^{\uparrow}x \cap ^{\uparrow}y} ^{\uparrow}t$$



 ${}^{\uparrow}1 = \{4, 6, 7, 8\}$ ${}^{\uparrow}2 = \{3, 5, 6, 7, 8\}$ ${}^{\uparrow}1 \cap {}^{\uparrow}2 = \{6, 7, 8\}$ ${}^{\uparrow}6 \cup {}^{\uparrow}7 \cup {}^{\uparrow}8 = \{8\}$

 $mub(\{1,2\}) = \{6,7\}$

Non-lattice Detection (III): Computing Transitive Closure using MapReduce



(1,4), (1, 6), (2, 3), (2, 6), (3, 5), (4, 7), (5, 7), (6, 8), (7, 8)

(1,4), (1, 6), (1, 7), (1, 8), (2, 3), (2, 5),(2, 7), (2, 8), (3, 5), (3, 7), (3, 8), (4, 7),(4, 8), (5, 7), (5, 8), (6, 8), (7, 8)

- Map: $(c, a) \rightarrow (c, \{a_1, a_2, ..., a_n\})$
- Reduce: $(c, \{a_1, a_2, \ldots, a_n\}) \rightarrow (c, {}^{\uparrow}c)$

MapReduce Pipeline for Detecting Non-lattice Pairs

Results for Non-lattice Pairs

- 30-node Hadoop local cloud
- 8 versions from 07/2009 to 03/2014
- Average total computing time: < 3 hours (3 month)

	07/2009	01/2010	01/2011	01/2012	07/2012	01/2013	07/2013	03/2014
Concepts	306,627	290,078	292,405	294,797	295,311	296,876	297,695	299,286
IS-A Relations	445,549	430,489	435,294	438,711	438,927	441,589	443,796	445,357
Non-lattice Pairs	559,182	566,239	576,688	568,535	581,754	574,204	584,934	586,771
Compute Time (s)	10,168	74,169	6,726	7,822	7,883	8,176	8,430	11,166

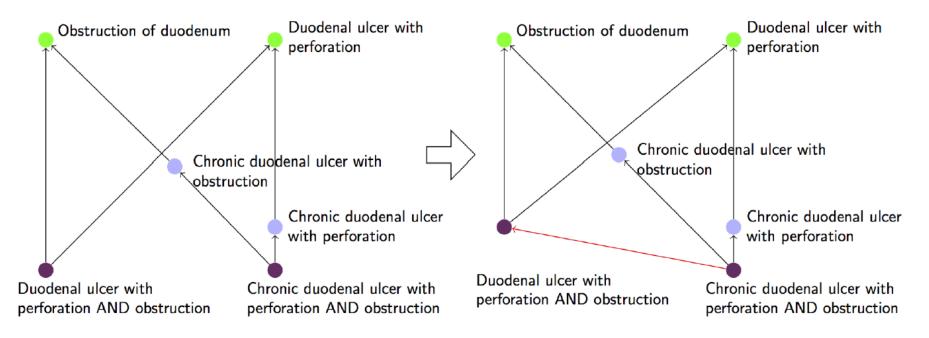
Mining Non-lattice Subgraphs using Lexical Patterns

- Consider the fully specified name of a concept as a set (bag) of words in lower case:
 - Containment

$$U_i \subset U_j$$
 or $L_i \subset L_j$

Intersection

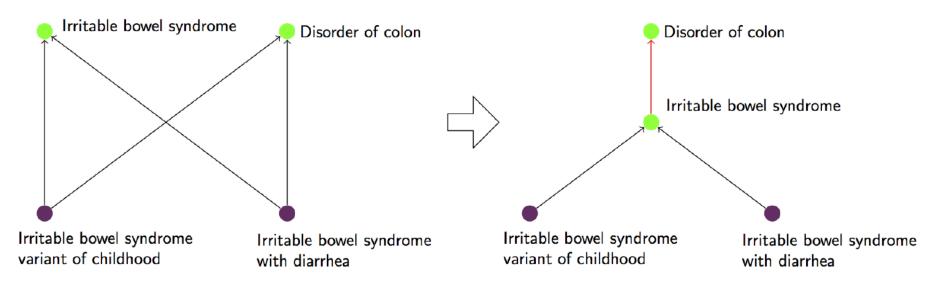
$$L_i \cap L_j = U_k$$


Union

 $U_i \cup U_j = L_k$

Union-Intersection

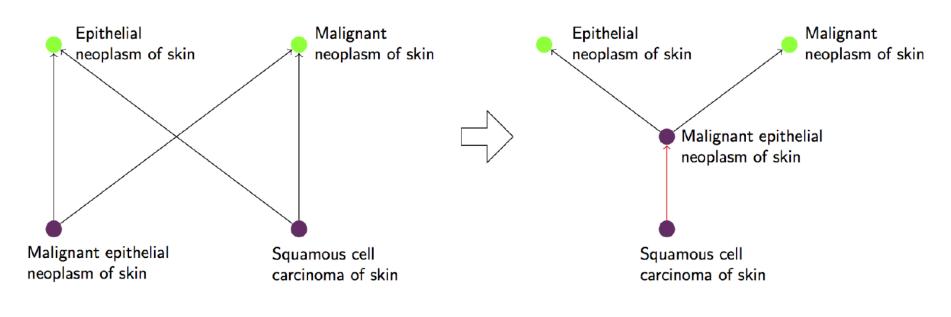
 $U_i \cup U_j = L_s \cap L_t$


Containment $(L_i \subset L_j)$

{duodenal, ulcer, perforation, obstruction} \subset {chronic, duodenal, ulcer, perforation, obstruction}

• This situation generally suggests a missing hierarchical relation between concepts in the upper boundary or the lower boundary.

Intersection $(L_i \cap L_j = U_k)$

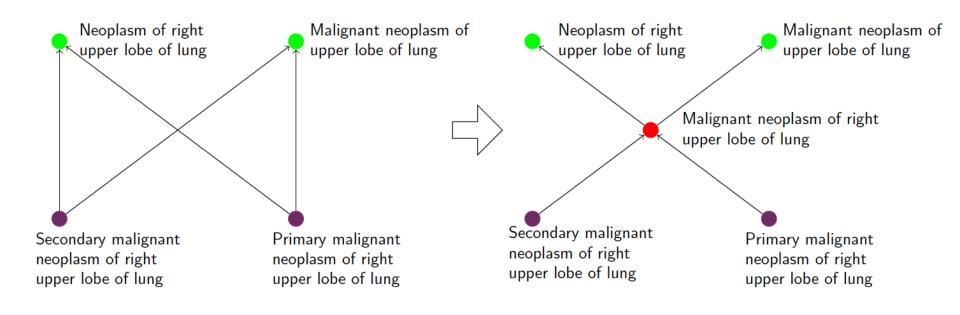


{*irritable*, *bowel*, *syndrome*, *variant*, *childhood*} \cap {*irritable*, *bowel*, *syndrome*, *diarrhea*}

= {irritable, bowel, syndrome}

 This situation generally suggests a missing hierarchical relation between concepts in the upper boundary.

Union $(U_i \cup U_j = L_k)$



 $\{epithelial, neoplasm, skin\} \cup \{malignant, neoplasm, skin\}$

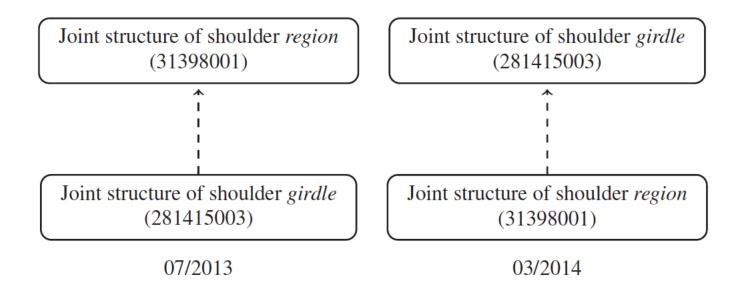
 $= \{epithelial, neoplasm, skin, malignant\}$

• This situation generally suggests a missing hierarchical relation between concepts in the lower boundary.

Union-intersection (UI) ($U_i \cup U_j = L_s \cap L_t$)

{neoplasm, right, upper, lobe, lung} \cup {malignant, neoplasm, upper, lobe, lung} = {secondary, malignant, neoplasm, right, upper, lobe, lung} \cap {primary, malignant, neoplasm, right, upper, lobe, lung}

 This situation generally suggests a missing intermediary concept between the upper boundary and the lower boundary.


Results for Ming Non-lattice Subgraphs

Material: September 2015 version of SNOMED CT (U.S. edition)

- 631,006 non-lattice pairs were detected.
- 171,011 non-lattice subgraphs were extracted.
- Sizes of non-lattice subgraphs ranged from 4 to 5,137.
- 90% of the non-lattice subgraphs had sizes 4 to 100.

More Examples on OQA

 Mining Relation Reversals in the Evolution of SNOMED CT Using MapReduce*

*Tao S, **Cui L**, Zhu W, Sun M, Bodenreider O, Zhang GQ. Mining Relation Reversals in the Evolution of SNOMED CT Using MapReduce. *AMIA Joint Summits on Translational Science* 2015, pp. 46-50.