The University of Texas School of Biomedical Informatics at Houston

The University of Texas Health Science Center at Houston is accredited by the Southern Association of Colleges and Schools Commission on Colleges to award certificate, baccalaureate, masters, doctorate and special professional degrees. Contact the Commission on Colleges at 1866 Southern Lane, Decatur, Georgia 30033-4097 or call 404-679-4500 for questions about the accreditation of The University of Texas Health Science Center at Houston.

This catalog is a general information publication only. It is not intended to nor does it contain all regulations that relate to students. Applicants, students, and faculty are referred to The University of Texas Health Science Center at Houston General Catalog. The provisions of this catalog and/or the General Catalog do not constitute a contract, express or implied, between any applicant, student or faculty member and The University of Texas School of Biomedical Informatics at Houston or The University of Texas System. The University of Texas School of Biomedical Informatics at Houston reserves the right to withdraw courses at any time, to change fees or tuition, calendar, curriculum, degree requirements, graduation procedures, and any other requirements affecting students. Changes will become effective whenever the proper authorities so determine and will apply to both prospective students and those already enrolled.

To the extent provided by applicable law, no person shall be excluded from participation in, denied the benefits of, or be subject to discrimination under any program or activity sponsored or conducted by UTHealth on the basis of race, color, national origin, religion, sex, sexual orientation, gender expression or gender identity, age, veteran status, genetic information, or any other basis prohibited by law.

2018-2020 CATALOG
## School of Biomedical Informatics Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message from the Dean</td>
<td>1</td>
</tr>
<tr>
<td>Academic Calendar</td>
<td>3</td>
</tr>
<tr>
<td>Administration</td>
<td>4</td>
</tr>
<tr>
<td>Faculty</td>
<td>4</td>
</tr>
<tr>
<td>Mission of the University of Texas School of Biomedical Informatics at Houston</td>
<td>5</td>
</tr>
<tr>
<td>The University of Texas School of Biomedical Informatics at Houston</td>
<td>6</td>
</tr>
<tr>
<td>Application Information</td>
<td>7</td>
</tr>
<tr>
<td>Enrollment Status</td>
<td>10</td>
</tr>
<tr>
<td>Financial Information</td>
<td>11</td>
</tr>
<tr>
<td>Optional and Mandatory Fees</td>
<td>11</td>
</tr>
<tr>
<td>Application Fees</td>
<td>11</td>
</tr>
<tr>
<td>Tuition</td>
<td>11</td>
</tr>
<tr>
<td>Fees and Charges</td>
<td>11</td>
</tr>
<tr>
<td>Graduation Fee</td>
<td>12</td>
</tr>
<tr>
<td>Laboratory Fees</td>
<td>12</td>
</tr>
<tr>
<td>Student Services Fee</td>
<td>12</td>
</tr>
<tr>
<td>Technology Fee</td>
<td>13</td>
</tr>
<tr>
<td>Student Records Fee</td>
<td>13</td>
</tr>
<tr>
<td>Optional Fees</td>
<td>13</td>
</tr>
<tr>
<td>Professional Liability Insurance</td>
<td>13</td>
</tr>
<tr>
<td>Competitive Academic Scholarship Awards</td>
<td>14</td>
</tr>
<tr>
<td>Summary of Estimated Annual Fees and Expenses Based on Full time enrollment</td>
<td>14</td>
</tr>
<tr>
<td>Program Expenses</td>
<td>14</td>
</tr>
<tr>
<td>Estimated Program Expenses for Biomedical Informatics Master's programs per year</td>
<td>15</td>
</tr>
<tr>
<td>Academic Standards, Policies, and Procedures</td>
<td>17</td>
</tr>
<tr>
<td>Grading System</td>
<td>17</td>
</tr>
<tr>
<td>Grade Reports</td>
<td>17</td>
</tr>
<tr>
<td>Student in Good Standing</td>
<td>19</td>
</tr>
<tr>
<td>Academic Probation</td>
<td>19</td>
</tr>
<tr>
<td>Student Conduct and Discipline</td>
<td>19</td>
</tr>
<tr>
<td>Course Attendance</td>
<td>19</td>
</tr>
<tr>
<td>Grade Grievance Procedure</td>
<td>20</td>
</tr>
<tr>
<td>Academic Dismissal and Appeal</td>
<td>20</td>
</tr>
<tr>
<td>Reapplication Following Dismissal</td>
<td>21</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>----------------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Transfer Credit</td>
<td>21</td>
</tr>
<tr>
<td>Petitioning for Course Equivalency</td>
<td>21</td>
</tr>
<tr>
<td>Transfer between Academic Programs</td>
<td>21</td>
</tr>
<tr>
<td>Reentry after Non-Attendance</td>
<td>22</td>
</tr>
<tr>
<td>Deferment for Newly Admitted Students</td>
<td>22</td>
</tr>
<tr>
<td>Resignation from the University</td>
<td>22</td>
</tr>
<tr>
<td>Clearance for Resignation, Graduation, or Dismissal</td>
<td>22</td>
</tr>
<tr>
<td>Medical Leave of Absence</td>
<td>22</td>
</tr>
<tr>
<td>Course Accommodation Request</td>
<td>23</td>
</tr>
<tr>
<td>Registering /Adding a Course</td>
<td>23</td>
</tr>
<tr>
<td>Dropping or Withdrawing from a Course</td>
<td>23</td>
</tr>
<tr>
<td>Auditing a Course</td>
<td>24</td>
</tr>
<tr>
<td>Concurrent/Inter-institutional Enrollment</td>
<td>24</td>
</tr>
<tr>
<td>General Degree Requirements</td>
<td>24</td>
</tr>
<tr>
<td>In Residence Requirement</td>
<td>24</td>
</tr>
<tr>
<td>Academic Honesty</td>
<td>24</td>
</tr>
<tr>
<td>Plagiarism/Self-Plagiarism</td>
<td>25</td>
</tr>
<tr>
<td>Student Governance Organization</td>
<td>25</td>
</tr>
<tr>
<td><strong>Educational Programs</strong></td>
<td>26</td>
</tr>
<tr>
<td>Biomedical Informatics</td>
<td>26</td>
</tr>
<tr>
<td>Essential Skills for Health Informaticians</td>
<td>26</td>
</tr>
<tr>
<td>Program Philosophy</td>
<td>26</td>
</tr>
<tr>
<td>Program Description</td>
<td>27</td>
</tr>
<tr>
<td><strong>Non-degree Biomedical Informatics</strong></td>
<td>28</td>
</tr>
<tr>
<td>Program Description and Goals</td>
<td>28</td>
</tr>
<tr>
<td>Admission to the Biomedical Informatics Non-degree Programs</td>
<td>28</td>
</tr>
<tr>
<td>Requirements for International Applicants</td>
<td>28</td>
</tr>
<tr>
<td>Application Deadlines</td>
<td>29</td>
</tr>
<tr>
<td><strong>Certificates of Biomedical Informatics</strong></td>
<td>30</td>
</tr>
<tr>
<td>Program Description and Goals</td>
<td>30</td>
</tr>
<tr>
<td>Admission to the Biomedical Informatics Certificate Programs</td>
<td>30</td>
</tr>
<tr>
<td>Requirements for International Applicants</td>
<td>30</td>
</tr>
<tr>
<td>Application Deadlines</td>
<td>31</td>
</tr>
<tr>
<td>Course of Study for the Biomedical Informatics Certificate Program</td>
<td>32</td>
</tr>
<tr>
<td>Course of Study for the Public Biomedical Informatics Certificate Program</td>
<td>32</td>
</tr>
<tr>
<td>Course of Study for the Applied Biomedical Informatics Certificate Program</td>
<td>33</td>
</tr>
<tr>
<td>Course of Study for the Health Data Science Certificate Program</td>
<td>33</td>
</tr>
<tr>
<td><strong>Undergraduate Accelerated Master’s Program (4+1) Certificate of Biomedical Informatics</strong></td>
<td>35</td>
</tr>
<tr>
<td>Program Description and Goals</td>
<td>35</td>
</tr>
<tr>
<td>Admission to the Accelerated Biomedical Informatics Certificate Program</td>
<td>35</td>
</tr>
</tbody>
</table>
The University of Texas Health Science Center at Houston

The University of Texas School of Biomedical Informatics at Houston
2018-2020 Catalog

Message from the Dean

The University of Texas School of Biomedical Informatics at Houston (SBMI), an academic component of The University of Texas Health Science Center at Houston (UTHealth) is the only academic program of biomedical informatics in the State of Texas and the only free-standing school of biomedical informatics in the nation. The mission of SBMI is to educate and train future scientists and professionals in biomedical informatics and health information technology, to conduct informatics research to improve healthcare and advance biomedical discovery, and to develop and use advanced informatics tools to solve practical problems in biomedicine and healthcare. SBMI is an informatics innovator serving Texas, leading the nation, and impacting the world. SBMI has been undergoing rapid growth over the past several years, tripling both student enrollment and faculty size.

Biomedical informatics is a highly interdisciplinary field with contributions from clinical science and practice (medicine, nursing, dentistry, pharmacy, population health, etc.), public and community health, computer science and engineering (including artificial intelligence and machine learning), mathematics and biostatistics, cognitive science, social and behavioral sciences, healthcare management, and health IT policy and law. Biomedical informatics studies the acquisition, storage, communication, processing, integration, analysis, mining, retrieval, interpretation, and presentation of data and how to transform data (meaningless symbols) to information (interpreted data) to knowledge (validated information) to intelligence (actionable knowledge) to solve problems in biomedical discovery, healthcare delivery, and disease prevention.

Data science is a new term that emerges in other fields and industries with the recent surge of big data, but in essence, data science is informatics and data science in biomedicine and healthcare is biomedical informatics, which has been around for a much longer time.

The biomedical informatics field has many job openings and continues to expand with careers ranging from electronic health record implementation and management, information governance, data analytics, telemedicine, genomic testing and diagnosis, precision and personalized medicine, mobile and connected health, healthcare quality analysis and reporting, health insurance data analysis, and more.

The varied and talented faculty represent expertise both in the theory and practice of informatics applied to biomedical discovery, and healthcare delivery, and disease prevention, and the pursuit of cutting edge research with a focus on translational informatics moving research from the lab to the bedside, to the community, and to the market. Students find the school's performance-based, highly interdisciplinary, team-oriented education and research programs stimulating, challenging and career enhancing.

Master’s and doctoral degrees, along with certificate programs are offered in the unique environment of the Texas Medical Center, the most concentrated area of biomedical and healthcare expertise, knowledge and skills in the world. There are outstanding opportunities for students to be involved in informatics as it is applied to health care and biomedical research in the many UTHealth clinical and research components and the more than fifty other healthcare related entities in the surrounding Texas Medical Center. Students interact with highly qualified and experienced faculty active in research as they develop solutions for a wide array of biomedical informatics problems. Our certificate and master’s
students will learn to apply the most advanced understanding of biomedical informatics and health information technology to improve biomedical discovery and the delivery of healthcare. Doctoral students will work with leading researchers in a broad array of biomedical informatics areas to create new knowledge, advance the discipline, and open up new areas such as translational bioinformatics, precision medicine, and big health data analytics for future generations.

Students and faculty in our programs come from numerous health professions (medicine, nursing, pharmacy, public health, etc.), basic sciences, biomedical sciences, computer science, engineering, biomedical engineering, healthcare management, cognitive science, and social sciences. The “transdisciplinary” nature of the school's educational and research programs makes them unique and rewarding and results in breakthrough discoveries. School faculty and students are involved in making groundbreaking contributions to healthcare delivery and biomedical discovery. This includes inventing and evaluating new ways to capture, store, integrate, access, display, utilize, and evaluate healthcare and biomedical data, information, knowledge, and intelligence. SBMI is exploring the relationships between genomics and clinical care, developing big data analytics for healthcare quality and safety and pioneering futuristic functions and modules for electronic health records systems. Our faculty and students are discovering new functions for existing drugs while also monitoring and detecting potentially adverse events of drug interactions through natural language processing and data mining of electronic health records and medical literature with machine learning algorithms. While using health data to improve healthcare management, students and faculty in the SBMI community can develop mobile platforms to deliver health information to remote areas. The research performed at our school aids in the discovery of new methods and tools of social interaction to promote health prevention and public health. Artificial intelligence and deep learning algorithms are used to map genotypes and phenotypes and to detect computational biomarkers for Parkinson’s disease, psychiatric disorders, and imaging diagnosis. Biostatistical methods and statistical learning are used to identify genomic basis of cancer and other medicine conditions. SBMI is also innovative in the use of educational research and technology, revolutionizing how to design and implement competency-based online educational and learning environments for both biomedical scientists and healthcare professionals.

If this is the kind of challenge and learning environment you are looking for, then join us and become part of the informatics leaders of tomorrow. “The best way to predict the future is to invent it.” (Alan Kay) Help us invent the future of healthcare delivery, disease prevention, and biomedical discovery.

Jiajie Zhang, PhD
Dean
### Academic Calendar
**2018 - 2019**

#### FALL SEMESTER 2018
- Classes Begin: August 27, 2018
- Classes End: December 7, 2018
- Final Examinations: December 10 – 14, 2018

#### SPRING SEMESTER 2019
- Classes Begin: January 14, 2019
- Spring Break: March 18-22, 2019
- Classes End: May 3, 2019
- Final Examinations: May 6-10, 2019

#### SUMMER SESSION 2019 (12-WEEK SESSION)
- Classes Begin: May 20, 2019
- Classes End: August 12, 2019
- Final Examinations: August 13 - 14, 2019

---

### Academic Calendar
**2019 - 2020**

#### FALL SEMESTER 2019
- Classes Begin: August 26, 2019
- Classes End: December 6, 2019
- Final Examinations: December 9-13, 2019

#### SPRING SEMESTER 2020
- Classes Begin: January 6, 2020
- Spring Break: March 16-20, 2020
- Classes End: April 24, 2020
- Final Examinations: April 27 – May 1, 2020

#### SUMMER SESSION 2020 (12-WEEK SESSION)
- Classes Begin: May 18, 2020
- Classes End: August 7, 2020
- Final Examinations: August 10-11, 2020
The University of Texas Health Science Center at Houston

Note: At the discretion of the Dean, the attendance of certain individuals may be required on a scheduled university holiday and on other than the usual scheduled class dates because of practicum/preceptorship requirements. Holidays will be announced in the class schedule each semester/session.

Administration
Jiajie Zhang, PhD
Dean and Professor
The Glassell Family Foundation Distinguished Chair in Informatics Excellence

Susan H. Fenton, PhD, RHIA, FAHIMA
Associate Dean for Academic Affairs and Assistant Professor

Ryan Bien, MHA
Associate Dean for Management

Jaime Hargrave
Director of Student Affairs

Faculty

A list of current faculty members can be found at https://sbmi.uth.edu/faculty-and-staff/index.htm
Mission of The University of Texas School of Biomedical Informatics at Houston

The mission of The University of Texas School of Biomedical Informatics at Houston (SBMI) is to educate future scientists and professionals in biomedical informatics and health information technology, conduct informatics research to improve health care and advance biomedical discovery and develop advanced informatics tools to solve problems in health care.

SBMI's mission is consistent with UTHealth's mission:

As a comprehensive health science university, the mission of The University of Texas Health Science Center at Houston is to educate health science professionals, discover and translate advances in the biomedical and social sciences, and model the best practices in clinical care and public health.

We pursue this mission in order to advance the quality of human life by enhancing the diagnosis, treatment, and prevention of disease and injury, as well as promoting individual health and community well-being.
The University of Texas School of Biomedical Informatics at Houston

The University of Texas School of Biomedical Informatics at Houston (SBMI), formerly known as the School of Health Information Sciences (SHIS), was founded in 1972 as the School of Allied Health Sciences. The school is the newest of the six UTHealth schools. UTHealth is located in the world-renowned Texas Medical Center (TMC), the largest medical center in the world.

In 1992, UTHealth determined it would focus on graduate education in the health sciences. At that time, the school began to shift from traditional allied health baccalaureate programs toward the development of graduate programs to join the other professional and graduate schools in the university. In 1997, the school created the Department of Health Informatics and began to offer a Master of Science in health informatics. In 2001, the school name was changed to the School of Health Information Sciences (SHIS), which also subsumed all faculty and students in the department. The school offered a Master of Science in health informatics, a Doctor of Philosophy in health informatics and a Certificate Program in health informatics for non-degree seeking students. In 2010, the school underwent another name change. SHIS became the School of Biomedical Informatics. SBMI currently offers certificate programs in health informatics; a Master of Science in health informatics with two tracks: a traditional research track and an applied health informatics track; a Doctor of Philosophy in health informatics; and dual-degree programs with other UTHealth schools and institutions in Texas.

SBMI is located in the University Center Tower, 7000 Fannin Street, Suite 650, Houston, Texas 77030
https://sbmi.uth.edu
Application Information

Applications to the programs in SBMI may be submitted online at https://sbmi.uth.edu/applysbmi/

Additional information is available by contacting SBMI’s Office of Academic Affairs at:

The University of Texas Health Science Center at Houston (UTHealth)
School of Biomedical Informatics
School of Academic Affairs
7000 Fannin, Suite 650
Houston, TX 77030
Telephone: (713) 500–3591
Email address SBMIAcademics@uth.tmc.edu

Specific requirements for admission to the certificate and degree programs are provided in the program section of this catalog.

Certificate Admission Process

Completed applications are reviewed by the Certificate Program Coordinator(s). Recommendations for or against admission are made to the Associate Dean for Academic Affairs. The Certificate Program Coordinator(s) advise all certificate students.

General Admission Process for Degree Programs

The SBMI Admission, Progression and Graduation Committee reviews completed applications to the master’s and doctoral programs.

The admission criteria include, but are not limited to:

- Prior academic preparation (depth, breadth, and performance): application, college transcripts, and letters of recommendation;
- Relevant work experience (particularly practice in the field of study): application, goal statement, curriculum vitae (CV) or resume, and letters of recommendation;
- Career goals: application, goal statement, and letters of recommendation;
- Motivation: goal statement, letters of recommendation, and college transcripts;
- Integrity: goal statement, and letters of recommendation;
- Standardized tests: GRE scores and TOEFL/IELTS (if required);
- Thesis, publications and other scholarly works: supplemental documents provided by applicant;
- Success in overcoming social, economic or educational disadvantages.

Qualified applicants will be invited to interview with faculty members at the discretion of the committee. The Office of Academic Affairs will schedule personal interviews. In addition to the listed criteria, the applicant’s communication skills and understanding of the program may be evaluated based on the personal interview. Admissions decisions will be made after interviews are completed.
Additional Application Requirements for International Applicants

An international student is a student who is not a citizen or a permanent resident of the U.S. or a student with transcripts from an international institution. All international students must contact and must be cleared by the UTHealth Office of International Affairs prior to registration. Here is additional information regarding the international applicant admission process:

- **TOEFL (Test of English as a Foreign Language)/IELTS (International English Language Testing System) score.** The official score for the TOEFL test must be submitted directly to the UTHealth Office of the Registrar from the TOEFL test centers using institutional codes 6906; no department code is required. The minimum acceptable score is an 87 on the internet-based test. The official scores for the IELTS Academic test must be submitted directly to the UTHealth Office of the Registrar from the IELTS test centers. The minimum acceptable score is a 7. Testing is at the applicant’s expense.

- **International applicants who have received a diploma from a university at which English is the language of instruction are not required to submit an English Language exam.** If this school is outside of an English-speaking country, evidence that indicates the language of instruction will need to be provided with your application such as a letter from the University on official letterhead.

- **International applicants must submit official transcripts and a course-by-course education evaluation of all transcripts from all universities attended outside the United States.** The application forms for such an evaluation may be obtained online from the service providers; Educational Credential Evaluators, Inc., [www.ece.org](http://www.ece.org) and World Education Services, [www.wes.org](http://www.wes.org). Only evaluations from ECE or WES will be accepted. The results of the evaluation must be submitted directly to the UTHealth Office of the Registrar by the agency. The evaluation report is at the applicant’s expense.

- **Students on an F-1 student visa are not eligible to enroll in the Applied Certificate or the Applied Master’s in Biomedical Informatics track programs.** F-1 sponsorship is available for students in the Certificate in Public Health Informatics, Certificate in Biomedical Informatics, and Research Master’s, and Doctoral programs.

- The I-20 form, required by the Department of Homeland Security (DHS) and the United States Citizenship and Immigration Services (USCIS), is prepared by UTHealth and issued to qualified non-immigrant applicants who have been admitted and who have demonstrated financial ability to support their education. Upon acceptance, the non-immigrant student will be asked to provide financial and visa information so that the I-20 form may be completed. The student must submit the completed form to the American Embassy in his/her country of origin in order to receive a student visa or must otherwise be eligible for F-1 status in the U.S. Please contact the UTHealth Office of International Affairs for information (713-500-3176, utoiahouston@uth.tmc.edu).

- **Official transcripts of all previous academic institutions must be submitted to the Office of the Registrar. Courses with grades of "C" or lower are not transferable for equivalency credit.**
Admissions Application Deadlines

Certificates in Biomedical Informatics Application Deadlines

Fall admissions                 July 1
Spring admissions            November 1
Summer admissions        March 1

Master of Science in Biomedical Informatics Application Deadlines

Fall admissions                 July 1
Spring admissions            November 1
Summer admissions        March 1

Doctor of Philosophy in Biomedical Informatics Application Deadlines

Fall admissions                 March 1
Spring admissions            July 1
Summer admissions        November 1

Address application inquiries to:
Office of Academic Affairs
UTHealth School of Biomedical Informatics at Houston
7000 Fannin, Suite 650
Houston, TX 77030 713-500-3591
SBMIAdmissions@uth.tmc.edu

Waiver or alteration of admission requirement, other than those mandated by statute, for admission to SBMI or of courses offered by SBMI, must be based upon a review of the circumstances, a justification and review by the faculty, and final written approval by the Dean. Requirements mandated by statute will not be waived or altered.

In order to register, a student must have on file in the Office of the Registrar official transcripts and documents of all previous academic work, and meet all admission requirements. A student who knowingly falsifies or is a party to the falsification of any official University record (including transcripts and/or application for admission) will be subject to the offer of admission being withdrawn, or disciplinary action, which may include dismissal from the University.
Enrollment Status

Students who matriculate in the School of Biomedical Informatics fall into one of the following categories.

**Full-time Student:** a graduate student enrolled in at least nine semester credit hours (SCH) each during the fall and spring semester, or six semester credit hours in the 12-week summer session. Only those credit hours in UTHealth courses taken for credit are counted in the calculation of credits designating a full-time student.

**Part-time Student:** a graduate student enrolled in a program for fewer than nine semester credit hours in the fall or spring semester, or fewer than six semester credit hours in the 12-week summer session.

**Certificate Student:** a student admitted to a certificate program seeking a certificate of completion of 15 semester credit hours. Enrollment in a certificate program does not entitle student admission to a degree-seeking program.

**Non-degree Student:** a student who is admitted to SBMI for one or more courses but not admitted to a degree or certificate program. Enrollment as a non-degree student does not entitle a student to admission to a program. A non-degree student is not eligible to receive a degree. Non-degree students will not be allowed to register for practicum/doctoral courses. Non-degree students can complete a maximum of 9 semester credit hours and must maintain a 3.0/4.0 grade point average.

**Accelerated Masters Student:** a student who is presently enrolled in a bachelors-level academic program at another accredited institution that has a signed Program Agreement with SBMI and has been admitted to SBMI to complete a graduate certificate at the same time as completing an undergraduate degree.

**Concurrent/Inter-institutional Student:** Concurrent and inter-institutional students can complete a maximum of 12 semester credit hours and must maintain a 3.0/4.0 grade point average.

Any degree or certificate seeking student enrolled at UTHealth who is not admitted to a degree program or certificate program in the School of Biomedical Informatics can complete a maximum of 12 semester credit hours and must maintain a 3.0/4.0 grade point average.

Student Enrollment

Students enroll each semester by using myUTH on the web at [https://my.uth.tmc.edu](https://my.uth.tmc.edu). There is no on-site enrollment. Enrollment dates are announced in the online Registration Schedule found on the Office of Registrar website at: [http://www.uth.edu/registrar/current-students/registration/registration-schedule.htm](http://www.uth.edu/registrar/current-students/registration/registration-schedule.htm)
Financial Information

Optional and Mandatory Fees

Certain mandatory and optional fees should be anticipated for enrollment at SBMI. Mandatory fees are required of all UTHealth students. Optional fees are not required, but the student may elect to subscribe to any of the services listed under optional fees. Tuition and fees are subject to change and become effective on the date enacted. The Texas Legislature does not set the specific amount for any particular student fee. Student fees are authorized by state statute; the specific fee amounts and the determination to increase fees are made by the university administration and The University of Texas System Board of Regents.

Mandatory Fees

Application Fee

Any prospective student submitting an application to SBMI for consideration must also submit a non-refundable $60 application fee. This fee is assessed to cover the cost of processing the application.

Tuition

Beginning Fall 2018, Texas resident tuition is $248 per semester credit hour. Non-resident tuition is $864 per semester credit hour. All tuition and fees charged are authorized by statute and by regental approval and can be found on the Office of the Registrar’s website: https://www.uth.edu/registrar/current-students/registration/tuition-fee-schedule.htm

A resident doctoral student who has a total of 100 or more semester credit hours of doctoral work at an institution of higher education is required to pay nonresident doctoral tuition rates. For more information contact the Office of the Registrar.

A student whose hours may no longer be submitted for formula funding because it is the same or substantially similar to a course that the student previously attempted for two or more times at The University of Texas Health Science Center at Houston will be charged a higher tuition rate of $864 per semester credit hour or nonresident tuition rates.

Fees and Charges

- Application Fee (non-refundable) $60
- Graduation Fee (see below) $100
- Installment Use Fee $20
- Late Payment Fee $25
- Late Registration Fee $25
- Returned Check Fee $25
- Credit Card Service Use Fee 2.5%
- Student Liability Insurance Fee (fall semester) $5.25
The University of Texas Health Science Center at Houston

- **Student Liability Insurance Fee (spring semester)** $5.25
- **Student Liability Insurance Fee (summer semester)** $4
- **Student Health Insurance Fee (annual rate)** $2,504
- **Student ID Replacement Fee** $10/card
- **Laboratory Fee** $30/applicable course
- **Student Services Fee (see table below)**
- **Information Technology Access Fee** $36/semester
- **Computer Resource Fee** $100/semester
- **Student Record Fee** $5/semester
- **Technology Fee** $100/semester
- **Alternative Instructional Delivery Fee (In and Out of State) for Web Courses** $110/semester credit hour

**Graduation Fee**

A graduation fee of $100, payable at registration for the student’s final academic term, is required of all degree-seeking students. This fee covers expenses associated with graduation but does not cover rental of the cap and gown. This fee is charged whether or not the student participates in graduation. Certificate students do not pay the graduation fee.

**Laboratory Fees**

Laboratory fees are assessed in an amount to cover the costs of technology and resources used by the student. Only assessed to a select number of SBM courses. To see which courses are subject to laboratory fees, please review the course descriptions on page 69.

**Student Services Fee**

The Student Services Fee is a mandatory fee assessed per semester credit hour to all students. The annual fee for academic year 2018-2019 is $566.25* with a maximum charge of $218.25 per fall and spring semester and $129.75 for the summer semester. The fee provides funding towards student governance activities, Student Health Services, Student Counseling, shuttle service, and recreational facilities. Optional family coverage for most student services is available. The 2018-2019 schedule of fees is as follows:
Technology Fee

A Technology Fee will be assessed to all students at $100 every semester to cover the expenses associated with the software, hardware, programming, maintenance fees and technical support used by students. The fee will support SBMI’s goal in achieving to be the best publicly supported biomedical informatics school in the US by conducting the highest quality programs in education, biomedical informatics applications and research. The fee will also allow SBMI in using the most current technology to train students and help attract the best and brightest students to our quality graduate programs.

Student Records Fee

The Student Records Fee provides students with unlimited transcripts and enrollment verification documents. The charge is $15.00 per academic year ($5 per semester).

Optional Fees

- Audit Fee: SBMI does not allow auditing of classes. For a fee of $25 per course, a student may elect to audit a course, i.e., attend the course without receiving academic credit at other UTHealth schools.
- Transportation Expenses: Students are required to provide their own transportation to practicum sites.
- Academic Regalia Rental: The charge for rental of the cap and gown is approximately $45 for master’s students and $70 for doctoral students. Information on ordering academic regalia is sent to students several months before annual commencement exercises. Additional information for graduates can be found here: https://sbmi.uth.edu/current-students/graduation/.

Professional Liability Insurance

Every student enrolled in the School of Biomedical Informatics must have professional liability insurance coverage in force throughout each semester enrolled in the minimum policy amount of $100,000 per claim. The professional liability insurance must include coverage for breach of confidentiality of protected health information in electronic or other patient records. Advance written notice or posting may change the minimum amount required by the Office of the Dean. The premium for this insurance is due at the time of initial registration and each fall and spring semester. The annual premium is prorated based on the student’s date of entry. The annual premium is approximately $14.50 per year.
Competitive Academic Scholarship Awards

Competitive Academic Scholarship awards are designed to facilitate the scholastic development of students who are in high academic standing. The benefits of this award are two-fold: (1) a direct financial award, and (2) if the recipient is not a resident of Texas, the change in status to resident tuition for the semester the award was earned and the two subsequent semesters. The residency waiver is applied for the aforementioned semesters regardless of the student’s enrollment in those semesters. All SBMI students are eligible to compete for these scholarships. The number of Competitive Academic Scholarships awarded each year is dependent on the availability of funds.

The criteria for selection are:
- Grade point average documented by the Director of Student Affairs
- Pattern of academic achievements, such as scientific papers, posters and/or presentations or any relevant honor, recognition or awards earned
- Relevant Biomedical Informatics community or volunteer experience including any Student Governance Organization (SGO) or Student InterCouncil (SIC) involvement
- Success in overcoming adversity

The SBMI Scholarship and Awards Committee considers all submissions. The SBMI Scholarship and Awards Committee is composed of SBMI faculty and a representative from the SBMI Office of Academic Affairs. The recommendations of the SBMI Scholarship and Awards Committee are submitted through the Associate Dean for Academic Affairs for submission to the Dean. Notification of awards will be made by email.

Summary of Estimated Annual Fees and Expenses Based on Full-time, On Campus enrollment

Yearly Program Expenses

<table>
<thead>
<tr>
<th>Expense</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Fee (one-time only)</td>
<td>$60</td>
</tr>
<tr>
<td>Immunization (approximate cost, one time only)</td>
<td>$175</td>
</tr>
<tr>
<td>Student Criminal Background Check(^1)</td>
<td>$49</td>
</tr>
<tr>
<td>Tuition (based on 24 hours annually)(^2)</td>
<td></td>
</tr>
<tr>
<td>Resident</td>
<td>$5,952</td>
</tr>
<tr>
<td>Non-Resident</td>
<td>$20,736</td>
</tr>
<tr>
<td>Student Service Fee</td>
<td>$566.25</td>
</tr>
<tr>
<td>Information Technology Access Fee</td>
<td>$108</td>
</tr>
<tr>
<td>Computer Resource Fee</td>
<td>$300</td>
</tr>
<tr>
<td>SBMI Technology Fee</td>
<td>$300</td>
</tr>
<tr>
<td>Liability Insurance</td>
<td>$14.50</td>
</tr>
<tr>
<td>Laboratory Fees</td>
<td>$180 (varies by course selection)</td>
</tr>
<tr>
<td>Graduation Fee</td>
<td>$100</td>
</tr>
<tr>
<td>Transportation (Student’s responsibility)(^3)</td>
<td>varies</td>
</tr>
<tr>
<td>Books, Supplies, Miscellaneous Program Expenses (see Program section)</td>
<td>varies</td>
</tr>
</tbody>
</table>

School of Biomedical Informatics
Personal Anticipated Expenses

(Approximations) Apartment Rent\(^4\)

UT Housing (Varies by number of bedrooms/sq ft) $950

Daycare varies

Health/Medical Insurance\(^5\)

Basic coverage for student only $2,504

\(^1\) must be less than one year old; employment criminal background checks from UTHealth cannot be used for admission

\(^2\) based on 9 semester hours fall and spring and 6 semester credit hours for summer; $248 is resident cost per semester credit hour/$864 is non‐resident cost per semester credit hour.

\(^3\) the student is responsible for personal transportation and parking fees to and from the university and clinical practicum sites

\(^4\) does not include utilities or food costs

\(^5\) Student Health Insurance - Current information available at UTHealth Auxiliary Enterprises website at https://www.uth.edu/auxiliary-enterprises/insurance/index.htm. Though not required, health insurance is also available to purchase for students’ spouses and/or children. Contact Auxiliary Enterprises at student-insurance@uth.tmc.edu or 713 ‐ 500‐8400 to obtain an application for family coverage. Family coverage must match the coverage dates of the student. All students are required to show proof of coverage or proof of purchase of health insurance. International students also must provide proof of repatriation coverage or the student can purchase repatriation insurance for a cost of $96/per year.

Note: All of the estimates above are subject to change without prior notification.

Estimated Program Expenses for Biomedical Informatics Master's programs per year:

The expenses, which are specific to Biomedical Informatics, are estimated at:

<table>
<thead>
<tr>
<th>Item</th>
<th>Estimated Expenses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Textbooks*, computer** (required), software</td>
<td>$3800</td>
</tr>
<tr>
<td>Lab Fees</td>
<td>$30 per course (based on course selection)</td>
</tr>
<tr>
<td>$510 per practicum hour***</td>
<td>not to exceed $1,530</td>
</tr>
</tbody>
</table>

* Textbooks – SBMI students are not under any obligation to purchase a textbook from a university‐affiliated bookstore. The same textbook may also be available from an independent retailer, including an online retailer.
** Computer ($3,000 first year only) requirements are listed on the website (https://sbmi.uth.edu/current‐students/student‐handbook/computer‐requirements.htm) and are subject to change.

*** Practicum/Preceptor site may require additional requirements, e.g., immunizations, insurance, drug testing.

In addition, students must pay required school expenses (tuition, fee, etc.). See the Expense Table summarizing estimated expenses.
Academic Standards, Policies, and Procedures

In order for students to maintain good standing and receive appropriate grades and credits for their work, they must adhere to the School’s academic policies, procedures and standards.

The School requires a high level of academic achievement from our students, and the School has defined criteria for a student in good standing, a student worthy of academic recognition and a student in academic jeopardy. A letter grading system is used to assess the student’s level of achievement.

Grading System

“A” indicates excellent; “B” indicates good; “C” indicates unsatisfactory and is a failing grade; and “F” indicates failing; “P” indicates passing; “WP” or “WF” indicates that the student has withdrawn passing or failing, respectively; “I” indicates an incomplete grade, meaning that course requirements have not been satisfied. All letter grades are reported without modification of plus (+) or minus (-). Grades recorded for courses dropped after the deadline for WP or WF will be recorded as “F.” If a student accumulates four “WP” grades they will receive academic action. A “WF” will follow the same course of action as a failing grade.

Grade point averages (GPA) are computed at the end of each semester using the following academic standard:

A = 4 points
B = 3 points
C = 2 points
I = not counted
P = not counted
F = 0 points
WF = 0 points
WP = 0 points

Graduate level courses in which a grade of “B” or better has been earned may not be repeated for credit. Any student receiving a grade of less than a “B” in a required or elective course must retake the course and receive a grade of “B” or higher to continue on in their academic program.

Grade Reports

Students may access their official term grade reports online through myUTH at https://my.uth.tmc.edu.

Grades of “C”

A grade of “C” is a failing grade. Students who earn a grade of “C” must retake the course, whether a required or elective course, and earn a grade of “B” or higher to continue on in their academic program. The course must be retaken the next semester the course is offered. The original grade of “C” will remain on the student transcript. All students who earn a grade of “C” will be placed on academic probation. Students are not permitted to earn more than two grades of “C”. The third grade of “C” will result in dismissal from the school.
Grades of “I”

An incomplete or “I” grade may be given when course requirements have not been satisfied. A student must have completed at least 50% of the course curriculum requirements for a grade of “I” to be issued. A student must submit an Incomplete Grade Form to receive an incomplete or “I” grade. Students must remove a grade of “I” the academic semester following receipt of the “I” grade, or the incomplete grade will be converted to a grade of “F.” Grades of “I” will not be used in calculating the grade point average. All “I” grades must be removed from a student’s record (course requirements satisfied) before the student is eligible for graduation. A student must be enrolled for courses at SBMI in the semester they expect to graduate.

Grades of “F”

Students are not permitted to earn a grade of “F”. A grade of “F” will result in automatic dismissal from the school.

Grades of “WF”

Students who earn a grade of Withdrawal Failing (“WF”) for a course, whether a required or elective course, must retake the course and earn a grade of “B” or higher to continue on in their academic program. When retaking the course, a grade of “C” or lower is grounds for automatic dismissal from the program. The original grade of “WF” will remain on the student transcript. All students who earn a grade of “WF” will be placed on Academic Probation. Students are not permitted to earn more than one grade of “WF” during their academic program. A second grade of “WF” will result in automatic dismissal from the school. All enrollments in courses, including repeated courses, will be reflected on the student’s transcript.

Grades of “Pass/Fail”

The courses that are graded on a pass/fail basis are described in the course description section of the catalog. In these instances, a symbol of “P” is used to designate “pass” and an “F” to designate “fail.” Hours for courses taken pass/fail that are passed are not entered in the grade point calculation; however, hours for courses taken pass/fail and failed are included in the grade point calculation.

Each program establishes the maximum number of semester credits allowed that a student can take on a Pass/Fail basis during his or her study in that program. A maximum of three credit hours of Directed Study can be applied toward the Certificate program. A maximum of six credit hours of Directed Study can be applied toward the master’s and doctoral programs.

GPA Calculation

Grade point average is calculated using grades and credit hours for courses except for those courses in which a grade of “I,” “WP” or “P” is recorded. The grade achieved in repeated course is included in the calculation. Those courses taken through concurrent enrollment are not used in calculating the grade point average. Courses obtained by Petition for Equivalency Credit (PEC), which are graduate courses transferred from other institutions, are not used in the calculation of the grade point average.
Student in Good Standing

To be considered in “good standing” and making “satisfactory academic progress” at SBMI, a student admitted to a graduate degree program must be following the degree plan; must maintain a cumulative grade point average of 3.0 or above; and must not be on academic probation or suspension as determined by the Associate Dean for Academic Affairs. To remain in good standing a graduate student may earn no grade less than a “B” during their program.

Academic Probation

Probation is an official warning status for a defined period of time that informs the student of unsatisfactory academic and/or professional performance, and provides the student an opportunity to improve. Any student who does not adhere to the academic and professional standards of SBMI is subject to probation, suspension, and/or dismissal by the Associate Dean for Academic Affairs. When a student attains a minimum cumulative grade point average of 3.0, the student’s official transcripts will reflect the student’s removal from academic probation.

Criteria upon which grades are based are given at the beginning of each course in the course syllabus. Professional standards include appropriate dress, attendance, conduct, and any particular standards required by the program. If a student has questions regarding academic and professional requirements or if assistance is needed in meeting the standards, the student should consult with the course instructor or advisor.

Following the completion of the semester in which any of the following occur, the Associate Dean for Academic Affairs will place a graduate student on academic probation if the student (1) receives a grade of less than “B” (“C,” “WF,” or “F”) in a course while at SBMI; (2) earns a calculated cumulative grade point average (GPA) of less than 3.0 or (3) fails to make satisfactory academic progress toward the degree. The graduate student is removed from academic probation at the end of the following registration period when no grade below “B” is assigned in a graduate course, a cumulative grade point average of 3.0 is achieved, and any other cause for probation is removed or remedied.

An SBMI graduate student will be dismissed if a third grade of “C” is earned in any course. If a grade of “C” is earned while the student is enrolled in a concurrent or inter-institutional course, the student will be placed on probation. If the concurrent or inter-institutional course grade is the third grade of “C” the student will be automatically dismissed.

Student Conduct and Discipline

All students are responsible for knowledge of and compliance with UTHealth policies regarding student conduct. Students are referred to the UTHealth Handbook of Operating Procedures (HOOP) Policy 186, Student Conduct and Discipline, located at https://www.uth.edu/hoop/policy.htm?id=1448220 and https://www.uth.edu/hoop/186-appendix-b.htm.

Course Attendance Policy

Attendance is required for any student registered for an on-campus course. A student in an on-campus course missing more than three class meetings and not keeping up with the course assignments may be dropped at the discretion of the instructor.
International students studying on an F-1 visa are required to enroll and complete 9 credit hours in the Fall and Spring Semesters unless the student begins his/her program in the Summer session. If classes begin in the Summer session then the F-1 student will be required to enroll in the Summer, Fall, and Spring semesters for the first year that classes begin. F-1 students may fulfill their full-time enrollment by enrolling in six (6) credit hours of face-to-face (on-campus attendance) coursework and in one three (3) credit hour, online (distance learning) class. The online (distance learning) class is restricted to one class not to exceed three hours. Any F-1 student who fails to enroll and complete full-time studies in Fall and Spring will be violating his/her visa status unless prior written approval is granted by the Office of International Affairs and reported to the U.S. Department of Homeland Security. The Office of International Affairs is required by U.S. Immigration regulations to report any F-1 student who fails to enroll and complete full-time enrollment (as described above) within the mandatory days of reporting. Any F-1 student who has questions regarding maintenance of F-1 status should make an appointment to meet with his/her International Advisor.

Grade Grievance Procedure

In attempting to resolve any student grievance regarding grades or evaluations, it is the obligation of the student first to make a serious effort to resolve the matter with the faculty member with whom the grievance originated. Individual faculty members retain primary responsibility for assigning grades and evaluations. The faculty member’s judgment is final unless compelling evidence suggests differential treatment or mistake. If the evidence warrants appeal, the student must submit a request in writing within 30 days of the date of the evaluation in question and, in the case of a grade for a course, within 30 days of the date the Registrar recorded the grade of the course in question. The request for the appeal with supporting evidence must be submitted to the Associate Dean for Academic Affairs, and the appeal must be resolved by no later than the end of the semester after the semester in which the grade was earned. Upon receipt of the request, the Associate Dean for Academic Affairs will review the case and submit a copy of the appeal to the appropriate Standing Committee of the Faculty Governance Organization for review and recommendation. The Standing Committee of the Faculty Governance Organization will review the request and render its recommendation in writing to the Associate Dean for Academic Affairs within 15 business days. The Associate Dean for Academic Affairs will submit a written recommendation to the Dean. The student will be notified in writing of the Dean’s decision within seven business days of the Associate Dean for Academic Affairs recommendation. The determination of the Dean is final.

Academic Dismissal and Appeal

A student who is on academic probation for one semester and who does not achieve the minimum cumulative 3.0 GPA and the individual course grades necessary to be removed from probation, or remove the cause of probationary status, will be notified of dismissal from the program by the Associate Dean for Academic Affairs and will not be allowed to continue in the program.

The student may request a reconsideration of the dismissal by submitting a written request to the Dean within five business days of receipt (electronic or hard copy) of the dismissal letter. The student must also send a copy to the Chair of the Admissions, Progression and Graduation Committee of the Faculty Governance Organization. The student must provide evidence in support of the request for reconsideration of the dismissal. The Admissions, Progression and Graduation Committee will review the
request and render its recommendation in writing to the Dean within 15 business days. The student will be notified in writing of the Dean’s decision within seven business days of the Committee’s recommendation. The determination of the Dean is final.

**Reapplication Following Dismissal**

Should a student reapply and be readmitted to the program from which he or she was dismissed, the student will be placed on scholastic probation for one semester. If the student fails to raise his or her cumulative GPA within that semester to 3.0, or if the student makes a course grade below that required to be removed from probation, or otherwise fails to meet standards to be off probation, the student will be dismissed from the School and may not be readmitted.

**Transfer Credit**

Transfer credit for equivalent graduate courses taken elsewhere may be awarded and used to meet degree requirements if their equivalency to a SBMI degree program course is approved through a Petition for Equivalency Credit (PEC). The maximum number of transferable semester credit hours is 3 for the certificate program, 12 for the master’s program, 36 for the PhD program and 21 for the DHI program. Contact the SBMI Office of Academic Affairs for information.

Courses that are being accepted at SBMI through a dual or joint degree program can only be transferred in if the grade earned in the course is a “B” or higher. Courses for which grades of less than “B” were earned will not be accepted for transfer.

Applicants who are presenting course work from universities or colleges outside the United States to meet admission or graduation requirements are referred to the section on International Applicants in this catalog for a listing of additional requirements.

**Petitioning for Course Equivalency**

A student who wishes to receive credit for a graduate course which he or she has taken at another institution and which is similar in content to any course offered at SBMI is to submit required documentation for a Petition for Equivalency Credit (PEC) to the SBMI Office of Academic Affairs during their first academic year.

Credit is only given to courses that match the current SBMI Course Catalog. Courses for which grades of less than “B” were earned will not be accepted for equivalency. Courses must have been completed within the last five years to qualify. The submitted syllabus from the course taken must be from the semester and year the student completed the course. Syllabi from any other semester or year will not be accepted and the PEC will be denied.

Any exceptions to the policy must be petitioned with the Associate Dean of Academic Affairs. For additional information, please contact the SBMI Office of Academic Affairs.

**Transfer between Academic Programs**

A student who is enrolled in a minimum of one (1) credit hour is eligible to transfer from one Academic Program to another. A change in Academic Program can only occur once during the course of study. The Academic Program must be at the same level or a lower level program.
A Change of Academic Plan Request Form must be submitted to the Office of Academic Affairs with a new goal statement outlining the students goals in the new program. Students are not permitted to change their academic plan in their final semester of any degree program. Changes to academic plans cannot be made retroactively.

If approved, the student is expected to complete their Academic Program for the newly requested plan. At the time of program completion, re-application to SBMI is required for any subsequent program of study.

**Reentry after Non-Attendance**

A student who has not enrolled in two consecutive registration periods (including the summer session) must submit a Reentry Form to the SBMI Office of Academic Affairs along with a new goal statement signed by the student’s advisor indicating approval for reentry to the program. A student who has not enrolled for three or more consecutive registration periods will be dismissed and must reapply for admission to the program and the School.

**Deferment for Newly Admitted Students**

A newly admitted student is allowed up to one year for deferment. The SBMI Office of Academic Affairs must be notified of all deferments in writing before the start of the semester. A student who defers admission will be governed under the catalog in effect during their first semester of enrollment at SBMI. Any newly admitted student who does not enroll for three consecutive registration periods shall no longer be considered an admitted student and must reapply for admission to the program and SBMI.

**Resignation from the University**

A student who withdraws from all courses enrolled at SBMI at the end of, or prior to, completing a scheduled semester, should notify his or her advisor and the SBMI Office of Academic Affairs in writing by submitting the UTHealth Resignation Form, which can be found on the Registrar’s website.

**Clearance for Resignation, Graduation, or Dismissal**

Any student who submits for resignation or is dismissed from, or completes a program in SBMI must complete the official student clearance process. Such clearance is necessary to ensure that the student has met all obligations to specified offices in SBMI, UTHealth, and the Texas Medical Center. A student clearance form and instructions for completing the clearance process may be obtained from the SBMI Office of Academic Affairs.

**Medical Leave of Absence**

The purpose of a medical leave of absence (MLOA) is to provide students time away from campus for treatment of a physical or mental health condition. The authority to grant a MLOA and permission to return from a MLOA resides with the Associate Dean for Academic Affairs. Each leave is individualized based on the needs of the student and handled on a case-by-case basis. For additional information, please contact the SBMI Office of Academic Affairs.
Course Accommodation Requests

Course accommodations are made in response to individual requests for accommodation. If a student needs accommodation, it is the student’s responsibility to let their instructor know. Information on disability issues can be found under HOOP 101 Disability Accommodation https://www.uth.edu/hoop/policy.htm?id=1447954

If a student believes they have a disability requiring an accommodation, they are to contact the SBMI Associate Dean for Academic Affairs at (713) 500-3591.

For additional information about the institutional Disability Accommodation policy, students can contact the UTHealth Equal Opportunity Administrator at (713) 500-3416.

Registering /Adding a Course

Prior to course registration, students are encouraged to work with their academic advisor or advising committee to determine the appropriate courses and course load for the upcoming semester. If a permission code is required for course registration, the student must request instructor approval via email and forward the instructor’s approval to the SBMI Office of Academic Affairs at SBMIAcademics@uth.tmc.edu. Following this, the student must use myUTH at https://my.uth.tmc.edu to add the course to their schedule. Refer to the Office of the Registrar’s, School of Biomedical Informatics Academic Calendar for deadline dates for adding a course for any semester or session. A student will be unable to add a course after the official reporting date.

Dropping or Withdrawing from a Course

To drop a course during the add/drop period the student must go to myUTH at https://my.uth.tmc.edu. Courses which are dropped during the add/drop period are not reflected on the students transcript. Please refer to the Refund Policy on the Registrar’s Website here: https://www.uth.edu/registrar/current-students/registration/refund-policy.htm to determine what percentage, if any, students will receive a refund for tuition paid prior to dropping the course.

To withdraw from a course after the 12th class day and before the last day to withdraw (listed on the Office of the Registrar’s, School of Biomedical Informatics Academic Calendar for the semester) the student must submit a signed Add-Drop/Withdrawal Form to the Registrar’s Office. Students must obtain signatures of the course instructor(s), and the Associate Dean for Academic Affairs in order to drop the course(s). The student must return the completed form to the Office of the Registrar before the deadline for dropping a course.

The grade recorded on the transcript will be a “WP” (withdrawal passing) or “WF” (withdrawal failing). The instructor must assign a grade of “WP” or “WF”. A “WP” is indicated on the transcript if a student has no grades recorded or has a passing grade in the course at the time the course is dropped. The “WP” will not be calculated as part of the GPA. A “WF” is recorded if the student has a failing grade at the time the course is dropped. A record of “WF” on the transcript will be calculated as an “F” in determining the GPA.

If a student does not officially withdraw from the course, a grade of “F” will be assigned. A grade of “F” is recorded if course is dropped after the deadline stated in the academic calendar for that semester or session.
A student, who withdraws from all courses enrolled at SBMI at the end of, or prior to, completing a scheduled semester, should notify his or her advisor and the SBMI Office of Academic Affairs in writing by submitting the UTHealth Resignation Form, which can be found on the Registrar’s website.

**Auditing a Course** - SBMI does not allow auditing.

**Concurrent/Inter-Institutional Enrollment**

SBMI students may take courses for credit at area state colleges and universities through concurrent/inter-institutional enrollment. Courses taken by concurrent enrollment will not calculated into the student’s GPA. Concurrently enrolled students may complete a maximum of 9 semester credit hours at SBMI and must maintain a 3.0/4.0 grade point average in those courses. Information about participating institutions and procedures for concurrent enrollment can be found on the Registrar’s website at: [http://www.uth.edu/registrar/current-students/student-information/concurrentinter-institutional-enrollment.htm](http://www.uth.edu/registrar/current-students/student-information/concurrentinter-institutional-enrollment.htm).

**General Degree Requirements**

In order to receive a degree or a certificate from the School of Biomedical Informatics, the student is required to fulfill certain academic, in residence, and degree candidacy requirements. An enrolled student must be in good academic standing and must have completed all the curricular requirements of that program before being eligible for a degree or certificate.

**In Residence Requirement**

The term “in residence” refers to the minimum number of semester credit hours that must be earned in SBMI. A student must fulfill his or her in residence requirement in order to receive any academic degree or a certificate from SBMI. Refer to each degree section for specific semester credit hour minimum requirements.

**Academic Honesty**

Academic honesty is the cornerstone of the academic integrity of a university. It is the foundation upon which the student builds personal integrity and establishes a standard of personal behavior. Because honesty and integrity are such important factors, failure to perform within the bounds of these ethical standards is sufficient grounds to receive a grade of “F” in any course and be recommended for disciplinary actions from SBMI.

The following are examples of academic dishonesty:

- Cheating
- Plagiarism
- Unauthorized collaboration
- Collusion
- Falsifying academic records

Misrepresenting facts (e.g. providing false information to postpone an exam, obtain an extended deadline for an assignment, or even gain an unearned financial benefit)
Any other acts or attempted acts that violate the basic standard of academic integrity (e.g. multiple submissions – submitting essentially the same written assignment for two courses without authorization to do so.)

Refer to the Student Conduct and Discipline section in the SBMI Student Handbook or to HOOP 186 Student Conduct and Discipline (https://www.uth.edu/hoop/policy.htm?id=1448220) and Appendix A - Unacceptable Student Conduct (https://www.uth.edu/hoop/186-appendix-a.htm) for more information.

**Plagiarism/Self-Plagiarism**

For grade generating assignment submissions, students must always submit their own work.

Exception: If group work is allowed or required by the assignment or course.

Student should always provide citations to indicate inclusions from others' work in their papers and assignment submissions.

Students should not reuse in whole or in part of their own previously submitted assignments, papers, text, data, etc. without explicitly indicating prior dissemination. This includes all graded/published artifacts of ones academic career including time at SBMI.

Students must have instructor permission if they plan to reuse a previous assignment submitted in another course for a grade.

Plagiarism may include:

- Words or ideas taken from someone else without acknowledgment
- Giving incorrect information about the source
- Changing the sequence or structure but using ideas without citation
- Not including material in quotes if directly taken from someone else’s material and/or copying any amount of other’s material.

Per the Exam Proctoring Policy found here: https://sbmi.uth.edu/current-students/student-handbook/exam-proctoring.htm, students submitted work may be subject to evaluation from Turnitin for plagiarism prevention, and graded exams and quizzes will require the use of Proctorio, an online proctoring software.

Refer to the Student Conduct and Discipline section in the SBMI Student Handbook or to HOOP 186 Student Conduct and Discipline (https://www.uth.edu/hoop/policy.htm?id=1448220) and Appendix A - Unacceptable Student Conduct (https://www.uth.edu/hoop/186-appendix-a.htm) for more information.

**Student Organizations/Student Governance Organization**

The Student Governance Organization (SGO) consists of SBMI students in both the master's and doctoral programs. Any student enrolled in a degree program at SBMI is eligible to become an elected representative of his or her program. The purpose of the Student Governance Organization is:

- to provide students of the school an organized feedback and advisory mechanism to the administration and faculty
- to provide students a mechanism by which they may have an impact on the decision-making processes
to provide social, cultural and recreational activities for students of the school
• to provide representation to the UTHealth Student InterCouncil

Educational Programs

Biomedical Informatics

Biomedical Informatics is the study of how health data is collected, stored, and communicated. The field also explores how the data is processed into health information suitable for scientific, administrative and clinical decision making and how computers and telecommunications technology can be applied to support these processes. Biomedical informaticians are in great demand and may work in various clinical, research and educational environments.

Essential Skills for Biomedical Informaticians

Biomedical Informatics is a collaborative discipline that builds on several other fields such as information sciences, biomedicine, computer science, and mathematics. However, the field is also interdisciplinary and collaborative. For students who may need help gaining competencies in these foundation areas, courses are available to help. Solid background knowledge in these support areas is consistent with student success in the study of Biomedical Informatics.

To successfully perform the duties of a health informatician, an individual must be able to think critically and analytically, must demonstrate motivation, and must have a technical understanding of the computing environment that is the basis for informatics work. Students must be able to address problems in a clear and innovative manner. Other requirements include the ability to communicate in English both verbally and in writing at the graduate level and to work in interdisciplinary teams. Depending on their application area, students must have demonstrable proficiency with certain programming languages, college algebra, computer literacy skills, anatomy, physiology, health language, clinical care, and operational characteristics of healthcare.

Program Philosophy

The ultimate goal of the program is to use informatics to improve the health of the people of Texas. SBMI strongly believes that healthcare will increasingly require a cooperative interaction among the health disciplines. The result will be practitioners who understand the technology, data, information, knowledge, assumptions and decision making of others as they attempt to design, provide and evaluate healthcare in the 21st century.

To that end, the Biomedical Informatics program stresses the development of interdisciplinary teams to evaluate and address the complex informatics issues that will face healthcare in the next century. Students will enter the Biomedical Informatics program with a strong base from their previous undergraduate or graduate studies, and will study how to communicate knowledge across traditional, professional, and organizational barriers. As they progress, students will acquire the principles and knowledge needed to organize, store, display, communicate, and evaluate that knowledge across a variety of systems – electronic, social, and political.
The Biomedical Informatics program will start from a strong scientific base and move to the application of informatics in a variety of areas related to the interests of students and faculty. These areas of interest may include, but are not limited to computational knowledge, electronic health records, health data science, health information visualization or bioinformatics.

Biomedical Informatics is always undergoing rapid change. New technologies, conceptual understandings, and computational processes ensure that the future will bring increasing rates of change and development. Students will have the knowledge and skills to address present issues and the adaptability to address future ones. The Biomedical Informatics program continuously aims to meet the needs of students, develop new research to advance the frontiers of the science, and be an active participant in the development and application of informatics initiatives in the community.

Program Description

The Program in Biomedical Informatics is designed to be transdisciplinary in its focus. The program is the first in the nation that does not reside in a discipline-specific professional school. Students come from a variety of disciplines, and work in interdisciplinary teams to better understand the knowledge unique to each discipline and how that knowledge must be translated for use by other disciplines.

The certificate, masters and doctoral degree programs incorporate an interdisciplinary and integrative design that is unique to the field of biomedical informatics. Many existing informatics master and doctoral programs are organized around a specific discipline in which applications of informatics within that discipline are emphasized, e.g., medical informatics, nursing informatics, and dental informatics. The Biomedical Informatics program, on the other hand, is designed to be inherently transdisciplinary and integrative. This means that the fundamental informatics concepts that transcend and apply to all traditional healthcare disciplines are emphasized. Moreover, these programs will identify and teach the major informatics concepts that integrate and link diverse health disciplines, creating focus on patient healthcare.
Non-degree Biomedical Informatics

Program Description and Goals

A student who is admitted to SBMI for one or more courses but not admitted to a degree or certificate program is considered a non-degree student. Enrollment as a non-degree student does not entitle a student to admission to a SBMI degree-seeking program. A non-degree student is not eligible to receive a certificate or degree. Non-degree students will not be allowed to register for practicum/doctoral courses. Non-degree students can complete a maximum of 9 semester credit hours and must maintain a 3.0/4.0 grade point average.

Admission to the Biomedical Informatics Non-degree Program

The admission process to the certificate programs is designed to get the professional working applicant into a SBMI degree-seeking program by meeting minimal requirements. Each applicant must submit to the Registrar’s Office the following:

1. A completed non-degree application online
2. $60 application fee
3. An official transcript with the minimum of a baccalaureate or higher degree.
4. CV/resume
5. See the SBMI Prospective Student Admission Requirements webpage for additional information: https://sbmi.uth.edu/prospective-students/admission-requirements.htm

Requirements for International Applicants

- TOEFL (Test of English as a Foreign Language)/IELTS (International English Language Testing System) score. The official score for the TOEFL test must be submitted directly to the UTHealth Office of the Registrar from the TOEFL test centers using institutional codes 6906; no department code is required. The minimum acceptable score is an 87 on the internet-based test. The official scores for the IELTS Academic test must be submitted directly to the UTHealth Office of the Registrar from the IELTS test centers. The minimum acceptable score is a 7. Testing is at the applicant’s expense.

- International applicants who have received a diploma from a university at which English is the language of instruction are not required to submit an English Language exam. If this school is outside of an English-speaking country, evidence that indicates the language of instruction will need to be provided with your application such as a letter from the University on official letterhead.

- International applicants must submit official transcripts and a course-by-course education evaluation of all transcripts from all universities attended outside the United States. The application forms for such an evaluation may be obtained online from the service providers; Educational Credential Evaluators, Inc., www.ece.org and World Education Services, www.wes.org. Only evaluations from ECE or WES will be accepted. The results of the evaluation must be submitted directly to the UTHHealth Office of the Registrar by the agency. The evaluation report is at the applicant’s expense.
• Students on an F-1 student visa are not eligible to enroll in the Applied Certificate or the Applied Master’s in Biomedical Informatics track programs. F-1 sponsorship is available for students in the Certificate in Public Health Informatics, Certificate in Biomedical Informatics, Research Master’s and PhD programs.

• The I-20 form, required by the Department of Homeland Security (DHS) and the United States Citizenship and Immigration Services (USCIS), is prepared by UTHealth and issued to qualified non-immigrant applicants who have been admitted and who have demonstrated financial ability to support their education. Upon acceptance, the non-immigrant student will be asked to provide financial and visa information so that the I-20 form may be completed. The student must submit the completed form to the American Embassy in his/her country of origin in order to receive a student visa or must otherwise be eligible for F-1 status in the U.S. Please contact the UTHealth Office of International Affairs for information (713-500-3176, utoiahouston@uth.tmc.edu).

Official transcripts of all previous academic institutions attended must be submitted to the Office of the Registrar.

**Application deadlines:**

<table>
<thead>
<tr>
<th>Type</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall admission</td>
<td>July 1</td>
</tr>
<tr>
<td>Spring admission</td>
<td>November 1</td>
</tr>
<tr>
<td>Summer admission</td>
<td>March 1</td>
</tr>
</tbody>
</table>

The coursework completed as a Non-Degree Seeking Student is at the graduate level. A transcript showing graduate credits may be obtained from the Registrar’s Office.

This coursework may be transferred into a degree-seeking program. No grade lower than a “B” will be accepted to transfer into the certificate, master’s or doctoral programs.
Certificates of Biomedical Informatics

Program Description and Goals

SBMI offers various Certificates of Biomedical Informatics designed for self-motivated professionals working in the health care and information technology fields. A certificate requires the student to complete a minimum of 15 semester credit hours.

The certificates provide professionals with an increased understanding of the opportunities and challenges involved in technology integration into healthcare. They will be able to participate in designing, planning, implementing and evaluating new software and hardware solutions at their institutions.

SBMI is experienced in providing education to working professionals. The certificate program is designed to provide quality education to professionals on their schedule as courses can be completed online.

Upon completion of the 15 semester credit hour certificate, students will be awarded a certificate of completion from UTHealth School of Biomedical Informatics.

Admission to the Biomedical Informatics Certificate Programs

The admission process to the certificate programs is designed to get the professional working applicant into the program by meeting minimal requirements.

The applicant should present a completed application and official documentation of the following:

1. A completed certificate application online
2. $60 application fee
3. An official transcript with the minimum of a baccalaureate or higher degree.
4. CV/resume
5. One Letter of reference
6. See the SBMI Prospective Student Admission Requirements webpage for additional information: https://sbmi.uth.edu/prospective‐students/admission‐requirements.htm

Requirements for International Applicants

- TOEFL(Test of English as a Foreign Language)/IELTS (International English Language Testing System) score. The official score for the TOEFL test must be submitted directly to the UTHealth Office of the Registrar from the TOEFL test centers using institutional codes 6906; no department code is required. The minimum acceptable score is an 87 on the internet-based test. The official scores for the IELTS Academic test must be submitted directly to the UTHealth Office of the Registrar from the IELTS test centers. The minimum acceptable score is a 7. Testing is at the applicant’s expense.

- International applicants who have received a diploma from a university at which English is the language of instruction are not required to submit an English Language exam. If this school is outside of an English-speaking country, evidence that indicates the language of instruction will need to be provided with your application such as a letter from the University on official letterhead.
International applicants must submit official transcripts and a course-by-course education evaluation of all transcripts from all universities attended outside the United States. The application forms for such an evaluation may be obtained online from the service providers; Educational Credential Evaluators, Inc., www.ece.org and World Education Services, www.wes.org. Only evaluations from ECE or WES will be accepted. The results of the evaluation must be submitted directly to the UTHealth Office of the Registrar by the agency. The evaluation report is at the applicant’s expense.

- Students on an F-1 student visa are not eligible to enroll in the Applied Certificate or the Applied Master’s in Biomedical Informatics track programs. F-1 sponsorship is available for students in the Certificate in Public Health Informatics, Certificate in Biomedical Informatics, Research Master’s and PhD programs.

- The I-20 form, required by the Department of Homeland Security (DHS) and the United States Citizenship and Immigration Services (USCIS), is prepared by UTHealth and issued to qualified non-immigrant applicants who have been admitted and who have demonstrated financial ability to support their education. Upon acceptance, the non-immigrant student will be asked to provide financial and visa information so that the I-20 form may be completed. The student must submit the completed form to the American Embassy in his/her country of origin in order to receive a student visa or must otherwise be eligible for F-1 status in the U.S. Please contact the UTHealth Office of International Affairs for information (713-500-3176, utoiahouston@uth.tmc.edu).

Official transcripts of all previous academic institutions attended must be submitted to the Office of the Registrar.

**Application deadlines:**

- Fall admission: July 1
- Spring admission: November 1
- Summer admission: March 1

The coursework completed as a Certificate Student is at the graduate level. A transcript showing graduate credits may be obtained from the Registrar’s Office.

This coursework may be transferred into a degree-seeking program. No grade lower than a “B” will be accepted to transfer into the certificate, master’s or doctoral programs.
Course of Study for Biomedical Informatics Certificate Program

The Biomedical Informatics Certificate Program offers the following course of study with a completion of 15 semester credit hours.

The Biomedical Informatics Certificate Program offers two different options. Option 1 is a set of five predetermined courses with an emphasis in Clinical Informatics.

BMI 5300 Introduction to Biomedical Informatics (3 credit hours)
BMI 5313 Foundations of Electronic Health Records and Clinical Information Systems (3 credit hours)
BMI 5314 Technology Assessment in Healthcare (3 credit hours)
BMI 5360 Clinical Decision Support Systems (3 credit hours)
BMI 6340 Health Information Visualization & Visual Analytics (3 credit hours)

BMI 5300 Introduction to Biomedical Informatics must be taken in the first semester. The other four courses can be taken in any order.

Option 2 is BMI 5300, Introduction to Biomedical Informatics and the student’s choice (with advice from a certificate program advisor) of four courses selected from the course concentration listing. This option allows professionals to customize their studies to meet their background and needs.

A maximum of three credit hours of Directed Study can be applied toward the Biomedical Informatics Certificate program.

Course of Study for Joint Certificate in Public Health Informatics

The Public Health Informatics Certificate Program offers the following course of study with a completion of 16 semester credit hours:

BMI 5300 Introduction to Biomedical Informatics (3 credit hours)
BMI 5380 Principles and Foundation of Public Health Informatics (3 credit hours)
PH 2612 Epidemiology I (3 credit hours)
PH 1690 Introduction to Biostatistics in Public Health (4 credit hours)

The fifth course is the student’s choice of one of the following courses (Minimum of 3 credit hours):

BMI 5313 Foundations of Electronic Health Records and Clinical Information Systems (3 credit hours)
BMI 5381 Methods in Public Health Informatics (3 credit hours)
BMI 5382 Synthesis Project of Public Health Informatics (3 credit hours)
PH 1110 Health Promotion and Behavioral Sciences in Public Health (3 credit hours)
PH 2110 Public Health Ecology & the Human Environment (3 credit hours)
PH 3715 Management and Policy Concepts in Public Health (3 credit hours)
PH 1690 Introduction to Biostatistics in Public Health, PH 2612 Epidemiology I or BMI 5300 Introduction to Biomedical Informatics must be taken in the first semester.

Courses that are being accepted at SBMI through the joint certificate program can only be transferred in if the grade earned in the course is a “B” or higher. Courses for which grades of less than “B” were earned will not be accepted for transfer and will require a retake.

Course of Study for Applied Biomedical Informatics Certificate Program

The Applied Biomedical Informatics Certificate Program offers the following course of study with a completion of 15 semester credit hours.

The Applied Biomedical Informatics Certificate Program offers two different options. Option 1 is a set of five predetermined courses with an emphasis in Electronic Health Records (EHRs).

BMI 5300 Introduction to Biomedical Informatics (3 credit hours)
BMI 5301 The U.S. Healthcare System (3 credit hours)
BMI 5306 Security for Health Information Systems (3 credit hours)
BMI 5313 Foundations of Electronic Health Records and Clinical Information Systems (3 credit hours)
BMI 5328 Systems Analysis and Project Management (3 credit hours)

BMI 5300 Introduction to Biomedical Informatics must be taken in the first semester. The other four courses can be taken in any order.

Option 2 is BMI 5300, Introduction to Biomedical Informatics and the student’s choice (with advice from a certificate program advisor) of four courses selected from the Applied Masters course offerings. This option allows professionals to customize their studies to meet their background and needs.

A maximum of three credit hours of Directed Study can be applied toward the Applied Biomedical Informatics Certificate program.

Course of Study for Health Data Science Certificate Program

The Health Data Science Certificate Program offers the following course of study with a completion of 15 semester credit hours.

BMI 5300 Introduction to Biomedical Informatics (3 credit hours)
BMI 5007 Methods in Health Data Science (3 credit hours)
BMI 5353 Biomedical Informatics Data Analysis (3 credit hours)
BMI 5304 Advanced Database Concepts in Biomedical Informatics (3 credit hours)
BMI 6340 Health Information Visualization & Visual Analytics (3 credit hours)

BMI 5300 Introduction to Biomedical Informatics must be taken in the first semester. The other four courses can be taken in any order based on individual course requirements.
For Certificate Program Information, contact:

School of Biomedical Informatics  
Office of Academic Affairs  
7000 Fannin Street Suite 650  
Houston, TX 77030 (713) 500-3591  
SBMIAcademics@uth.tmc.edu
Undergraduate Accelerated Master’s Program (4+1) Certificate of Biomedical Informatics

Program Description and Goals

Undergraduate students have the opportunity to earn both a Bachelor of Arts/Science and a Master of Science in Biomedical Informatics over the course of five years through the Accelerated Master’s Program. The program is an integrated program that overlaps graduate curriculum into the student's undergraduate work, which provides the opportunity to graduate with the bachelors at the same time as their Graduate Certificate in Biomedical Informatics. The students undergraduate degree program must be in an appropriate area, e.g., biomedical science, pre-med, nursing, health sciences, life sciences, management information systems, or computer science to qualify for admission to the Accelerated 4+1 Program.

SBMI has collaboration agreements with the following institutions whose students are eligible to participate in this integrated curriculum:

- Texas A&M International University (TAMIU)
- University of Texas Rio Grande Valley (UTRGV)

The student will graduate with an undergraduate degree in their selected major course of study, but will also have the opportunity to complete a master’s degree in Biomedical Informatics in one additional year instead of the customary two years.

Upon completion of the 15 semester credit hour certificate, students will be awarded a certificate of completion from UTHealth School of Biomedical Informatics. A transcript showing graduate credits may be obtained from the Registrar’s Office.

Admission to the Accelerated 4 + 1 Program

The admission process for the Accelerated 4 + 1 program requires the submission of both a Pre-Application and an SBMI application. Both applications must include all supplemental documents.

Step 1:
Prospective students are to complete the 4 + 1 Pre-Application where the applicant will upload the following items:

1. Copy of TAMIU or UTRGV Degree Audit or unofficial transcript
2. One Letter of Recommendation
3. Essay Question
4. See the SBMI Accelerated 4 + 1 Program Admission Requirements webpage for additional information: https://sbmi.uth.edu/prospective-students/academics/4-plus-1.htm

All documents for the Pre-Application must be submitted by September 15th for the Spring admission deadline, January 15th for the Summer admission deadline, and May 15th for the Fall admission deadline.

Candidates who successfully make it through the pre-application process will be cleared to begin step 2.
Step 2:
Upon meeting the requirements in Step 1, candidates are to submit the SBMI Application.

The applicant should present a completed application and official documentation of the following:
1. $60 application fee
2. Two page goal statement
3. An official transcript with minimum of a 3.0 GPA or higher in an appropriate area. Any dual credit or AP credits must be verified on the transcript from the present college or an official transcript from the awarding college or program.

Application deadlines:
- Fall admission: July 1
- Spring admission: November 1
- Summer admission: March 1

Any student receiving a grade of less than a “B” in a required or elective course must retake the course and receive a grade of “B” or higher to continue on in their academic program. The original grade of “C” will remain on the student transcript. Students are not permitted to earn more than two grades of “C”. The third grade of “C” will result in dismissal from SBMI.

No grade lower than a “B” will be accepted for transfer into the SBMI master’s or doctoral program.

Course of Study for Certificate Programs
The course requirements for earning both the undergraduate degree and graduate certificate from SBMI will vary by participating institution. Please contact the SBMI Accelerated 4+1 Program Coordinator for additional information.

TAMIU Certificate offerings:

Applied Biomedical Informatics
BMI 5300 Introduction to Biomedical Informatics (3 credit hours)
BMI 5306 Security for Health Information System (3 credit hours)
BMI 5313 Foundations of Electronic Health Records and Clinical Information Systems (3 credit hours)
BMI 5301 The U.S. Healthcare System (3 credit hours)
BMI 5328 Systems Analysis and Project Management (3 credit hours)

Biomedical Informatics
BMI 5300 Introduction to Biomedical Informatics (3 credit hours)
BMI 5313 Foundations of Electronic Health Records and Clinical Information Systems (3 credit hours)
BMI 5314 Technology Assessment in Health care (3 credit hours)
BMI 5360 Clinical Decision Support Systems (3 credit hours)
BMI 6340 Health Information Visualization and Visual Analytics (3 credit hours)

Public Health Informatics
BMI 5300 Introduction to Biomedical Informatics (3 credit hours)
BMI 5380 Principles of Public Health Informatics (3 credit hours)
PH 2612 Epidemiology 1 (3 credit hours)
PH 1690 Foundations of Biostatistics in Public Health (3 credit hours)

The fifth course is the student’s choice of one of the following courses (Minimum of 3 credit hours):
BMI 5313 Foundations of Electronic Health Records and Clinical Information Systems (3 credit hours)
BMI 5381 Methods in Public Health Informatics (3 credit hours)
BMI 5382 Synthesis Project of Public Health Informatics (3 credit hours)
PH 1110 Health Promotion and Behavioral Sciences in Public Health (3 credit hours)
PH 2110 Public Health Ecology & the Human Environment (3 credit hours)
PH 3715 Management and Policy Concepts in Public Health (3 credit hours)

UTRGV Certificate offerings:

Applied Biomedical Informatics
BMI 5300 Introduction to Biomedical Informatics (3 credit hours)
BMI 5306 Security for Health Information System (3 credit hours)
BMI 5313 Foundations of Electronic Health Records and Clinical Information Systems (3 credit hours)
BMI 5301 The U.S. Healthcare System (3 credit hours)
BMI 5328 Systems Analysis and Project Management (3 credit hours)

Biomedical Informatics
BMI 5300 Introduction to Biomedical Informatics (3 credit hours)
BMI 5330 Introduction to Bioinformatics (3 credit hours)
BMI 5333 Systems Medicine: Principles and Practice (3 credit hours)
BMI 5353 Statistical Methods of Genomic Data (3 credit hours)
BMI 5327 Standards in Health Informatics (3 credit hours)

Public Health Informatics
BMI 5300 Introduction to Biomedical Informatics (3 credit hours)
BMI 5380 Principles of Public Health Informatics (3 credit hours)
PH 2612 Epidemiology 1 (3 credit hours)
PH 1690 Foundations of Biostatistics in Public Health (3 credit hours)

The fifth course is the student’s choice of one of the following courses (Minimum of 3 credit hours):
BMI 5313 Foundations of Electronic Health Records and Clinical Information Systems (3 credit hours)
BMI 5381 Methods in Public Health Informatics (3 credit hours)
BMI 5382 Synthesis Project of Public Health Informatics (3 credit hours)
PH 1110 Health Promotion and Behavioral Sciences in Public Health (3 credit hours)
PH 2110 Public Health Ecology & the Human Environment (3 credit hours)
PH 3715 Management and Policy Concepts in Public Health (3 credit hours)
For Accelerated 4+1 Program Information, contact:

Jeanette Broshears  
Program Manager  
UTHealth School of Public Health  
Brownsville Campus  
80 Fort Brown Street, RAC N2.200  
Brownsville, Texas 78520  
Telephone: 956-755-0678  
Email: Jeanette.L.Broshears@uth.tmc.edu
The formal study of informatics at the master’s level is designed as a multi-disciplinary approach to accomplish these important goals:

1. Understand the scope of the discipline of Biomedical Informatics;
2. Demonstrate knowledge of the literature of Biomedical Informatics;
3. Develop informatics solutions to biomedical problems based on current research; and,
4. Utilize Electronic Health Records or other health information technologies effectively

Master of Science in Biomedical Informatics Admission Process

The applicant should present a completed application and official documentation of the following:

1. Official transcripts from every post-secondary school attended
2. A baccalaureate or higher degree
3. A two page, double spaced Goal Statement
4. A resume or curriculum vitae (as appropriate)
5. A Graduate Record Exam (GRE) score
6. Three letters of reference from educators and/or employers
7. For International Applicants: A minimum TOEFL score of 87 is acceptable on the internet based test. A minimum IELTS score is 7.

Applicant materials will be reviewed by the SBMI Admissions, Progression and Graduation (APG) Committee. The committee will consider such areas as:

- Health, MIS, Computer, or Engineering related degree
- Healthcare work experience
- Database work experience
- Informatics work experience
- Demonstrated expertise in programming
- GRE score
- GPA in previous degree
- Success in overcoming social, economic or educational disadvantages, race and ethnicity

Requirements for International Applicants

- TOEFL (Test of English as a Foreign Language)/IELTS (International English Language Testing System) score. The official score for the TOEFL test must be submitted directly to the UTHealth Office of the Registrar from the TOEFL test centers using institutional codes 6906; no department code is required. The minimum acceptable score is an 87 on the internet-based test. The official scores for the IELTS Academic test must be submitted directly to the UTHealth Office of the Registrar from the IELTS test centers. The minimum acceptable score is a 7. Testing is at the applicant’s expense.
• International applicants who have received a diploma from a university at which English is the language of instruction are not required to submit an English Language exam. If this school is outside of an English-speaking country, evidence that indicates the language of instruction will need to be provided with your application such as a letter from the University on official letterhead.

• International applicants must submit official transcripts and a course-by-course education evaluation of all transcripts from all universities attended outside the United States. The application forms for such an evaluation may be obtained online from the service providers; Educational Credential Evaluators, Inc., www.ece.org and World Education Services, www.wes.org. Only evaluations from ECE or WES will be accepted. The results of the evaluation must be submitted directly to the UTHealth Office of the Registrar by the agency. The evaluation report is at the applicant’s expense.

Students on an F-1 student visa are not eligible to enroll in the the Applied Master’s in Biomedical Informatics track programs. F-1 sponsorship is available for students in the Research Master’s program.

Master of Science in Biomedical Informatics application deadlines:

- Fall admission: July 1
- Spring admission: November 1
- Summer admission: March 1

Degree Requirements for the Master of Science in Biomedical Informatics

Academic Requirements

Credit hours must total at least 39 semester hours for all courses in the degree plan. Each student follows a degree plan developed with an Faculty Advisor. A total of 39 semester credit hours must be completed prior to graduation. There are two tracks within the Master’s Program. Students should work with the SBMI Office of Academic Affairs and their advisor to assure they are taking courses in their desired focus area.

A student in the MS Program in Biomedical Informatics has up to eight years (24 semesters) from the time of entry to complete the required course work. A student who has not enrolled in two consecutive registration periods (including the summer session) must submit to the SBMI Office of Academic Affairs a Reentry Form and new goal statement signed by the student’s advisor indicating approval for reentry to the program. A student who has not enrolled for three or more consecutive registration periods will be dismissed and must reapply for admission to the program and the School.

Each course with a BMI prefix in the Biomedical Informatics degree plan is a graduate-level course and should be passed with a grade of “B” or better. Students who earn a grade of “C” must retake the course, whether a required or elective course, and earn a grade of “B” or higher to continue on in their academic program. The course must be retaken the next semester the course is offered. The original grade of “C” will remain on the student transcript. All students who earn a grade of “C” will be placed on Academic Probation. Students are not permitted to earn more than two grades of “C”. The third grade of “C” will result in dismissal from the school. The minimum grade point average (GPA) required for graduation is 3.0 on all courses.
A maximum of six credit hours of Directed Study can be applied toward the master’s program.

**Transfer Credit**

Transfer credit for equivalent graduate courses taken elsewhere may be awarded and used to meet degree requirements if their equivalency to a SBMI degree program course is approved through a Petition for Equivalency Credit (PEC). The maximum number of transferable semester credit hours is 12 for the master’s program. Contact the SBMI Office of Academic Affairs for information.

Courses that are being accepted at SBMI through a dual or joint degree program can only be transferred in if the grade earned in the course is a “B” or higher. Courses for which grades of less than “B” were earned will not be accepted for transfer and will require a retake.

Applicants who are presenting course work from universities or colleges outside the United States to meet admission or graduation requirements are referred to the section on International Applicants in this catalog for a listing of additional requirements.

**Computer Requirement**

Every student is required to have reliable access to a computer that meets the minimum technical requirements. Students are encouraged to purchase a laptop that meets the minimum SBMI requirements.

Computer requirements are listed on the website here: [https://sbmi.uth.edu/current-students/student-handbook/computer-requirements.htm](https://sbmi.uth.edu/current-students/student-handbook/computer-requirements.htm) and are subject to change.

**Course of Study for the Master of Science in Biomedical Informatics**

**Traditional Track**

The curriculum of the traditional track for the Master of Science degree in Biomedical Informatics includes required didactic courses and a practicum. Didactic courses (lecture/discussion, demonstration and student laboratories) are presented to provide facts, concepts, and theories related to the techniques and procedures of Biomedical Informatics. The courses include instruction in basic informatics, research, advanced informatics and elective courses. The practicum is designed to give the students the opportunity to apply theory and techniques in the hospital, research, or private laboratory setting.

Each student will develop a degree plan with written approval of their advising committee. A degree plan will be filed that includes the core and required courses as specified below:

- 18 semester credit hours in required courses
- 18 semester credit hours in elective courses (see SBMI website for suggested concentration curriculum)
- 3 semester credit hours in practicum course
Changes to the degree plan must be approved in advance by the faculty advisor and the signed degree plan must be on file with the Office of Academic Affairs prior to course registration.

**Applied Track**

The curriculum of the traditional track for the Master of Science degree in Applied Biomedical Informatics includes required didactic courses, a choice of elective and a practicum. Didactic courses (lecture/discussion, demonstration and student laboratories) are presented to provide facts, concepts, and theories related to the techniques and procedures of Biomedical Informatics. The courses include instruction in basic and applied informatics. The practicum is designed to give the students the opportunity to apply theory and techniques in the hospital, research, or private laboratory setting.

Each student will develop a degree plan with written approval of their faculty advisor. A signed degree plan will be filed that includes the core and required courses as specified below:

- 33 semester credit hours in required courses
- 3 semester credit hours in an elective course
- 3 semester credit hours in practicum course

Changes to the degree plan must be approved in advance by the faculty advisor and the signed degree plan must be on file with the Office of Academic Affairs prior to course registration.

**Practicum**

Students in the Master of Science in Biomedical Informatics must select an area of interest in which to apply the knowledge and skill gained during the didactic courses while participating in the required practicum course. Students must complete at least 24 credit hours in their master’s program before participating in the practicum requirement. Students should work with the Practicum Coordinator for any necessary affiliation or program agreements with the practicum site, if agreements are not already in place. A practicum proposal must be submitted by week three of the semester of enrollment to the Practicum Coordinator and it must be approved, in writing, by the student’s Faculty Practicum Advisor.

Students can complete all required practicum credit hours during one semester or the course can be repeated for a maximum of 3 semester credit hours (for BMI 6000) to meet degree requirements. During the course of the semester(s), student must create weekly logs to chronicle their hours, tasks, and reflections on how the duties of the practicum relate to Biomedical Informatics courses taken. Once the student has logged all 135 clock hours and concluded all practicum projects, she or he must create in a 10 page APA format double spaced capstone report that details the major project they completed during their practicum. This report, along with other deliverables, will be submitted in completion of the practicum. If the student receives an incomplete for practicum, the student will have the following semester to complete it or receive an “F”. If students have any questions regarding the practicum, they can contact the Practicum Coordinator or the SBMI Office of Academic Affairs.
For further curriculum information, please contact:

UTHHealth School of Biomedical Informatics
Office of Academic Affairs
7000 Fannin Street Suite 650
Houston, Texas 77030
Telephone: (713) 500-3591
Email: SBMIAcademics@uth.tmc.edu
Master of Science in Biomedical Informatics and Master of Public Health Dual Degree Program

Program Description and Goals

The Master of Science in Biomedical Informatics/Master of Public Health dual degree program combines the MS degree from The University of Texas School of Biomedical Informatics at Houston with the MPH from The University of Texas School of Public Health at Houston. The training and curriculum in the dual degree program will provide students and future leaders in public health with the necessary skills to be leaders in the field of Public Health Informatics. The dual degree program provides an integrated curriculum that includes a number of shared courses as well as a practicum experience.

Students in the dual degree program must be admitted separately to each UTHealth school. Students must meet the requirements of each UTHealth school for its respective degree. Admission to one program does not ensure admission to the other. Students in the dual degree program will receive a diploma from each degree program after meeting the individual requirements of each UTHealth school. Admission does not have to be done at the same semester for each school, but must be done before reaching the maximum hours set by each school.

Master of Science in Biomedical Informatics Admission Process

The applicant should present a completed application and official documentation of the following:

1. Official transcripts from every post-secondary school attended
2. A baccalaureate or higher degree
3. A two page double spaced goal statement
4. A resume or curriculum vitae (as appropriate)
5. A Graduate Record Exam (GRE) score
6. Three letters of reference from educators and/or employers
7. For International Applicants: A minimum TOEFL score of 87 is acceptable on the internet based test. A minimum IELTS score is 7

Applicant materials will be reviewed by the SBMI Admissions, Progression and Graduation (APG) Committee. The committee will consider such areas as:

- Health, MIS, Computer, or Engineering related degree
- Healthcare work experience
- Database work experience
- Informatics work experience
- Demonstrated expertise in programming
- GRE score
- GPA in previous degree
- Success in overcoming social, economic or educational disadvantages, race and ethnicity
Requirements for International Applicants

• TOEFL (Test of English as a Foreign Language)/IELTS (International English Language Testing System) score. The official score for the TOEFL test must be submitted directly to the UTHealth Office of the Registrar from the TOEFL test centers using institutional codes 6906; no department code is required. The minimum acceptable score is an 87 on the internet-based test. The official scores for the IELTS Academic test must be submitted directly to the UTHealth Office of the Registrar from the IELTS test centers. The minimum acceptable score is a 7. Testing is at the applicant’s expense.

• International applicants who have received a diploma from a university at which English is the language of instruction are not required to submit an English Language exam. If this school is outside of an English-speaking country, evidence that indicates the language of instruction will need to be provided with your application such as a letter from the University on official letterhead.

• International applicants must submit official transcripts and a course-by-course education evaluation of all transcripts from all universities attended outside the United States. The application forms for such an evaluation may be obtained online from the service providers; Educational Credential Evaluators, Inc., www.ece.org and World Education Services, www.wes.org. Only evaluations from ECE or WES will be accepted. The results of the evaluation must be submitted directly to the UTHealth Office of the Registrar by the agency. The evaluation report is at the applicant’s expense.

F-1 sponsorship is available for students in the Research Master’s program.

Master of Science in Biomedical Informatics application deadlines:

<table>
<thead>
<tr>
<th>Type of Admission</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall admission</td>
<td>July 1</td>
</tr>
<tr>
<td>Spring admission</td>
<td>November 1</td>
</tr>
<tr>
<td>Summer admission</td>
<td>March 1</td>
</tr>
</tbody>
</table>

Transfer Credit

Transfer credit is not accepted for students enrolled in the dual degree program due to the amount of shared credit hours between SBMI and SPH.

Shared Credit Hours

Courses that are being accepted at SBMI through a dual or joint degree program can only be transferred into the SBMI degree plan if the grade earned in the course is a “B” or higher. Courses for which grades of less than “B” were earned will not be accepted for transfer and will require a retake.

Dual Degree Requirements for the Master of Biomedical Informatics

Academic Requirements
Each student follows a degree plan developed with the Dual Degree Program Coordinator. A total of 40 semester credit hours must be completed prior to graduation. A student in the MS Program in Biomedical Informatics has up to eight years (24 semesters) from the time of entry to complete the required course work. A student who has not enrolled in two consecutive registration periods (including the summer session) must submit to the SBMI Office of Academic Affairs a Reentry Form and new goal statement signed by the student’s advisor indicating approval for reentry to the program. A student who has not enrolled for three or more consecutive registration periods will be dismissed and must reapply for admission to the program and the School.

Each course with a BMI prefix in the Biomedical Informatics degree plan is a graduate-level course and should be passed with a grade of “B” or better. Students who earn a grade of “C” must retake the course, whether a required or elective course, and earn a grade of “B” or higher to continue on in their academic program. The course must be retaken the next semester the course is offered. The original grade of “C” will remain on the student transcript. All students who earn a grade of “C” will be placed on Academic Probation. Students are not permitted to earn more than two grades of “C”. The third grade of “C” will result in dismissal from the school. The minimum grade point average (GPA) required for graduation is 3.0 on all courses.

A maximum of six credit hours of Directed Study can be applied toward the SBMI master’s program.

Computer Requirement

Every student is required to have reliable access to a computer that meets the minimum requirements. Students are encouraged to purchase a laptop that meets the minimum UTHealth requirements.

Computer requirements are listed on the website (https://sbmi.uth.edu/current-students/student-handbook/computer-requirements.htm) and are subject to change.

Course of Study for MS/MPH Dual Degree

The curriculum for the Master of Science in Biomedical Informatics and the Master of Public Health include required didactic courses and a practicum. Didactic courses (lecture/discussion, demonstration and student laboratories) are presented to provide facts, concepts, and theories related to the techniques and procedures of public health courses, and support courses. The public health informatics practicum is designed to give the students the opportunity to apply theory and techniques in the hospital, research, community health agencies or private laboratory setting.

Each student will develop a degree plan with written approval of their advising committee. A degree plan will be filed that includes a minimum of:

- 31 semester credit hours in SBMI required courses (5 shared courses with SPH)
- 6 semester credit hours in elective courses
- 3 semester credit hours in practicum courses
Changes to the degree plan must be approved in advance by the faculty advisor and the signed degree plan must be on file with the Office of Academic Affairs prior to course registration.

<table>
<thead>
<tr>
<th>Program</th>
<th>Required Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master’s in Biomedical Informatics (MS)</td>
<td>40</td>
</tr>
<tr>
<td>Master’s in Public Health (MPH)</td>
<td>45</td>
</tr>
<tr>
<td>Total Semester Credits</td>
<td>85</td>
</tr>
<tr>
<td>Shared Courses</td>
<td>-25</td>
</tr>
<tr>
<td>GRAND TOTAL FOR COMBINED DEGREES</td>
<td>60</td>
</tr>
</tbody>
</table>

**Practicum**

Students in the SBMI masters program must select an area of interest in which to apply the knowledge and skill gained during the didactic courses while participating in the required practicum course. Students must complete at least 24 credit hours in their master’s program before participating in the practicum requirement. Students should work with the SBMI Practicum Coordinator for any necessary affiliation or program agreements with the practicum site, if agreements are not already in place. A practicum proposal must be submitted by week three of the semester of enrollment to the Practicum Coordinator and it must be approved, in writing, by the student’s Faculty Practicum Advisor. Students can complete all required practicum credit hours during one semester or the course can be repeated for a maximum of 3 semester credit hours (for BMI 6000) to meet degree requirements. During the course of the semester(s), student must create weekly logs to chronicle their hours, tasks, and reflections on how the duties of the practicum relate to Biomedical Informatics courses taken. Once the student has logged all 135 clock hours and concluded all practicum projects, she or he must create in a 10 page APA format double spaced capstone report that details the major project they completed during their practicum. This report, along with other deliverables, will be submitted in completion of the practicum. If the student receives an incomplete for practicum, the student will have the following semester to complete it or receive an “F”. If students have any questions regarding the practicum, they can contact the Practicum Coordinator or the SBMI Office of Academic Affairs.

**For Dual Degree Program Information, contact:**

Jeanette Broshears  
Program Manager  
UTHealth School of Public Health  
Brownsville Campus  
80 Fort Brown Street, RAC N2.200  
Brownsville, Texas 778520  
Telephone: 956-755-0678  
Email: Jeanette.L.Broshears@uth.tmc.edu
Doctor of Medicine and Master of Science in Biomedical Informatics Dual Degree Program
(Note this MD/MS Dual Degree Program does not begin until the spring 2019 semester.)

Program Description and Goals
The MD/MS Dual Degree program is for students aiming to be both physicians and informaticians. Through this unique program, students earning a Doctor of Medicine (MD) also study at SBMI and earn a Master of Science in Biomedical Informatics during their four years of medical school.

SBMI collaborates with two different UT System medical schools to offer the dual degree:
• McGovern Medical School at UTHealth
• University of Texas Rio Grande Valley (UTRGV) School of Medicine

Dual Degree students will explore the wide range of applications of health and biomedical informatics in the quest to improve patient care. The program examines both electronic health records systems and clinical decision support systems and methods for enhancing those tools. Students learn about data interpretation and knowledge management as they discover how to collect, process, and transform health and biomedical data into health information and knowledge. Dual Degree students will understand core clinical informatics disciplines such as technology assessment, quality and outcome improvement, data analytics and precision medicine.

Students in the dual degree program must satisfy admission requirements and be admitted separately to each program. Students must meet the requirements of each program for its respective degree. Admission to one program does not ensure admission to the other. Students in the dual degree program will receive a diploma from each degree program after meeting the individual requirements of each program. Admission does not have to be done at the same semester for each school but must be done before reaching the maximum hours set by each School.

Master of Science in Biomedical Informatics Admission Process
The applicant should present to the Registrar’s Office the following:
1. Official transcripts from every post-secondary school attended
2. A baccalaureate or higher degree
3. A personal statement detailing the applicant’s interest in the program
4. A resume or curriculum vitae (as appropriate)
5. A Graduate Record Exam (GRE) score
6. Grade Point Average (GPA) in previous (degrees) coursework
7. A minimum TOEFL score of 87 is acceptable on the internet based test. A minimum IELTS score is 7.
8. Three letters of reference from educators and/or employers

Applicant materials will be organized into a portfolio for review by the SBMI Admissions, Progression and Graduation (APG) Committee. The committee will consider such areas as:
The University of Texas Health Science Center at Houston

- Health, MIS, Computer, or Engineering related degree
- Healthcare work experience
- Database work experience
- Informatics work experience
- Demonstrated expertise in programming
- GRE score
- GPA in previous degree
- Success in overcoming social, economic or educational disadvantages, race and ethnicity

Requirements for International Applicants

- TOEFL (Test of English as a Foreign Language)/IELTS (International English Language Testing System) score. The official score for the TOEFL test must be submitted directly to the UTHealth Office of the Registrar from the TOEFL test centers using institutional codes 6906; no department code is required. The minimum acceptable score is an 87 on the internet-based test. The official scores for the IELTS Academic test must be submitted directly to the UTHealth Office of the Registrar from the IELTS test centers. The minimum acceptable score is a 7. Testing is at the applicant’s expense.
- International applicants who have received a diploma from a university at which English is the language of instruction are not required to submit an English Language exam. If this school is outside of an English speaking country, evidence that indicates the language of instruction will need to be provided with your application such as a letter from the University on official letterhead.
- International applicants must submit official transcripts and a course-by-course education evaluation of all transcripts from all universities attended outside the United States. The application forms for such an evaluation may be obtained online from the service providers; Educational Credential Evaluators, Inc., www.ece.org and World Education Services, www.wes.org. Only evaluations from ECE or WES will be accepted. The results of the evaluation must be submitted directly to the UTHealth Office of the Registrar by the agency. The evaluation report is at the applicant’s expense.
- Students on an F-1 student visa are not eligible to enroll in the Master’s in Health Informatics programs. F-1 sponsorship is available for students in the Research Master’s programs.

Master of Science in Biomedical Informatics application deadlines:

Fall admission       July 1
Spring admission    November 1
Summer admission    March 1

Dual Degree Application Process

The application process for the Doctor of Medicine is determined by the McGovern Medical School at UTHealth and the UTRGV School of Medicine, respectively. The application process for the Master of Science in Biomedical Informatics is determined by the School of Biomedical Informatics.
Transfer Credit

Transfer credit is not accepted for students enrolled in the dual degree program due to the amount of shared credit hours between SBMI and the participating institution.

Shared Credit Hours

Courses that are being accepted at SBMI through a dual or joint degree program can only be transferred into the SBMI degree plan if the grade earned in the course is a “B” or higher. Courses for which grades of less than “B” were earned will not be accepted for transfer and will require a retake.

Dual Degree Requirements for the Master of Science in Biomedical Informatics

Academic Requirements

Each student follows a degree plan developed with the guidance of SBMI’s Office of Academic Affairs. A total of 39 semester credit hours must be completed prior to graduation.

A full-time student in the dual degree program has up to five years (15 semesters) from the time of entry to complete the required course work. A part-time student has up to ten years (30 semesters) from the time of entry to complete the required course work. Continuous enrollment is required unless approval is obtained. A maximum of one year of an approved leave of absence will be allowed for continuance in the program. If more than one year of leave occurs, the student must apply for readmission to the program.

Each course with a BMI prefix in the Biomedical Informatics degree plan is a graduate level, professional course and must be passed with a grade of “B” or better. Students must earn a grade of “B” or higher in all dual degree program courses, unless the course is graded on a Pass or Fail basis in which a grade of “Pass” must be earned. If a dual degree student earns less than a “B” in any required course, it must be retaken to continue in the program. A grade of “B” or higher must be earned on the second attempt to prevent dismissal from the program. The minimum grade point average (GPA) required for graduation is 3.0 on all BMI courses.

Computer Requirement

Every student is required to have reliable access to a computer that meets the minimum requirements. Students are encouraged to purchase a laptop that meets the minimum UTHealth requirements. Computer requirements are listed on the website (sbmi.uth.edu/current-students/student-handbook/computer-requirements.htm) and are subject to change.

Course of Study for the Dual Degree MD/MS Master of Science in Biomedical Informatics
The Dual Degree program requires a minimum of 39 semester credit hours to earn the MS, including the completion of a practicum experience in the field of biomedical informatics. Students must complete 27 semester credit hours of SBMI coursework and 12 semester credit hours from the student’s MD program are accepted. The Dual Degree curriculum for the MS degree includes:

- Five (5) required SBMI courses totaling 15 semester credit hours
  - 3 semester credit hours in basic/introductory biomedical informatics
  - 6 semester credit hours in foundation courses
  - 3 semester credit hours in scientific writing
  - 3 semester credit hours in practicum
- Four (4) SBMI courses totaling 12 semester credit hours in the student’s unique informatics area of interest
  - Students will work with Office of Academic Affairs staff and SBMI faculty when selecting the courses.
- Four (4) Medical School modules equaling 12 semester credit hours
  - Unique module lists for each Medical School are below.

**McGovern Medical School at UTHealth Modules accepted by SBMI for the Dual Degree Program**

- Doctoring 1 Module: History and Physical (MS Year 1) – 4 semester credit hours
- Doctoring 2 Module: Longitudinal Clinical Experience (MS Year 1) – 4 semester credit hours
- Doctoring 3 Module: Longitudinal Clinical Experience (MS Year 2) – 4 semester credit hours
**Total – 12 semester credit hours**

**UTRGV School of Medicine Modules accepted by SBMI for the Dual Degree Program**

- MEDI 8117: Molecules to Medicine Module (MS Year 1) – 3 semester credit hours
- MEDI 8119: Attack & Defense (Evidence Based Medicine) (MS Year 1) – 3 semester credit hours
- MEDI 8111‐01 & 8111‐02: Medicine, Behavior & Society (MS Year 1 & 2) – 3 semester credit hours
- MEDI 8511: Mind, Brain and Behavior (MS Year 2) – 3 semester credit hours
**Total – 12 semester credit hours**

**Practicum**

Students in the Master of Science in Biomedical Informatics must select an area of interest in which to apply the knowledge and skill gained during the didactic courses while participating in the required practicum course. Dual Degree students in the MD/MS program must complete at least 24 credit hours in their master’s program before participating in the practicum requirement. Students should work with
the Practicum Coordinator for any necessary affiliation or program agreements with the practicum site, if agreements are not already in place. A practicum proposal must be submitted by week three of the semester of enrollment to the Practicum Coordinator and it must be approved, in writing, by the student’s Faculty Practicum Advisor. Students can complete all required practicum credit hours during one semester or the course can be repeated for a maximum of 3 semester credit hours (for BMI 6000) to meet degree requirements. During the course of the semester(s), student must create weekly logs to chronicle their hours, tasks, and reflections on how the duties of the practicum relate to Biomedical Informatics courses taken. Once the student has logged all 135 clock hours and concluded all practicum projects, she or he must create in a 18 page, double spaced capstone report that details the major project they completed during their practicum. This report, along with other deliverables, will be submitted in completion of the practicum. If students have any questions regarding the practicum, they can contact the Practicum Coordinator or the Office of Academic Affairs.

For further curriculum information, please contact:

UTHHealth School of Biomedical Informatics
Office of Academic Affairs
7000 Fannin Street Suite 650
Houston, Texas 77030
Telephone: (713) 500-3591
Email: SBMIAcademics@uth.tmc.edu
Program Description and Goals

This program is designed to be a research-based multi-disciplinary program involving students with a variety of backgrounds. Students will work together in teams to research real clinical and biomedical health problems. They will gain both the scientific background for research and skills needed to address problems. The program is designed to meet the unique needs of each student by using a matrix curriculum plan with an advising committee to guide each student from admission through graduation. Each student must have a faculty academic advisor to guide each student through participation in research projects.

The PhD program in Biomedical Informatics is conceptualized and designed to be inherently multi-disciplinary and integrative. This means that the fundamental informatics concepts that transcend and apply to all traditional healthcare disciplines will be emphasized in the PhD program. This program will identify and teach the major informatics concepts that integrate and link diverse health disciplines.

The PhD program in Biomedical Informatics is constructed as a post-baccalaureate degree that not only addresses the knowledge and skills that the student brings at admission, but allows the student to build on previous knowledge and skills in order to attain the research focus needed for the completion of the PhD program in Biomedical Informatics.

Students admitted to the master program can apply to the PhD program by meeting the same admission requirements as those who apply directly to the PhD program.

Formal study of informatics at the PhD level at UTHHealth is designed to accomplish these major goals:

• Expand the scope of the discipline of Biomedical Informatics

• Demonstrate familiarity with the Biomedical Informatics research literature, including in-depth knowledge of a selected Biomedical Informatics research area.

• Research and evaluate new regions or domains in Biomedical Informatics

• Lead interdisciplinary teams in the search for solutions to Biomedical Informatics problems

• Effectively communicate research findings to peers and to practitioners who can use the research findings.

The PhD program is a 93-semester credit hour full-time program developed as a post baccalaureate program. Part-time enrollment requires written approval of the advisor and advising committee.
Doctor of Philosophy in Biomedical Informatics Admission Process

The applicant should present a completed application and official documentation of the following:

1. Official transcripts from every post-secondary school attended
2. A baccalaureate or higher degree
3. A resume or curriculum vitae (as appropriate)
4. A Graduate Record Exam (GRE) score. GRE waivers will not be considered for the PhD program application. Official GRE test scores must be no more than five (5) years old.
5. Grade Point Average (GPA) in previous degrees
6. For international applicants, a minimum TOEFL score of 87 is acceptable on the internet-based test. A minimum IELTS score is 7.
7. Submit a three-page single spaced personal statement that addresses the following items:
   a. A brief summary of your background in all relevant fields, such as biomedicine, mathematics, and computer science; describing research experience and any results that were generated in research work. Provide dates, research advisors, project titles, and references to publications.
   b. A statement of educational goals and how these goals would be advanced through the PhD program.
   c. A statement of short and long-term career objectives, including specific information regarding short-term objectives, (any projects you may have in mind for your PhD work). Be sure to include how those objectives fit the opportunities provided by the SBMI educational and research environments.
8. Three letters of reference from educators and/or employers.

Requirements for International Applicants

- TOEFL (Test of English as a Foreign Language)/IELTS (International English Language Testing System) score. The official score for the TOEFL test must be submitted directly to the UTHealth Office of the Registrar from the TOEFL test centers using institutional codes 6906; no department code is required. The minimum acceptable score is an 87 on the internet-based test. The official scores for the IELTS Academic test must be submitted directly to the UTHealth Office of the Registrar from the IELTS test centers. The minimum acceptable score is a 7. Testing is at the applicant’s expense.

- International applicants who have received a diploma from a university at which English is the language of instruction are not required to submit an English Language exam. If this school is outside of an English-speaking country, evidence that indicates the language of instruction will need to be provided with your application such as a letter from the University on official letterhead.

- International applicants must submit official transcripts and a course-by-course education evaluation of all transcripts from all universities attended outside the United States. The application forms for such an evaluation may be obtained online from the service providers; Educational Credential Evaluators, Inc., www.ece.org and World Education Services, www.wes.org. Only evaluations from ECE or WES will be accepted. The results of the evaluation must be submitted directly to the UTHealth Office of the Registrar by the agency. The evaluation report is at the applicant’s expense.
F-1 sponsorship is available for students in the PhD program.

- The I-20 form, required by the Department of Homeland Security (DHS) and the United States Citizenship and Immigration Services (USCIS), is prepared by UTHealth and issued to qualified non-immigrant applicants who have been admitted and who have demonstrated financial ability to support their education. Upon acceptance, the non-immigrant student will be asked to provide financial and visa information so that the I-20 form may be completed. The student must submit the completed form to the American Embassy in his/her country of origin in order to receive a student visa or must otherwise be eligible for F-1 status in the U.S. Please contact the UTHealth Office of International Affairs for information (713-500-3176, utoiahouston@uth.tmc.edu).

**Doctor of Philosophy in Biomedical Informatics application deadlines:**

- Fall admissions: March 1
- Spring admissions: July 1
- Summer admissions: November 1

**PhD Application Review and Admission Process**

**Review by the Admissions, Progression, and Graduation (APG) Committee**

Applicant materials will be reviewed by the admissions committee. The admissions committee will review the materials and recommend whether applicants will be offered an interview - the next step in the PhD admissions process. The criteria that the committee considers are the same as for the master’s program including prior research experience. Applicants who are recommended for an interview will be contacted by Office of Academic Affairs for scheduling.

**Interview**

Applicants who proceed to the next level of the admission process will be interviewed by SBMI faculty members. The interview will focus on the applicant’s research goals and how they will be achieved in the PhD program. Applicants will also complete a writing assessment as part of the interview process.

**Faculty Governance Organization (FGO) Review and Recommendation**

All interviewed applicants will be presented and discussed at a Faculty Governance Organization meeting. An admission recommendation by the FGO will be made to the Associate Dean for Academic Affairs.

**Academic Advising**

The PhD Coordinator serves as the primary advisor until an Advising Committee and Committee Chair has been identified.

As a student progresses, they must identify an academic advisor. This person will serve as the Dissertation Chair. The Dissertation Chair (also known as mentor, PI, dissertation director, advisor) is a full-time
member of the School of Biomedical Informatics faculty who works with the student to develop a research
topic, helps formulate ideas and guides the progress of the dissertation. In some cases, although rare,
there is a Dissertation Co-Chair (principal research, co-advisor) who also advises the student. The
Dissertation Chair should be identified during the first year or initial semester of the second year. The
Change of Advisor Form (available on the Current Students section of the website) changing the PhD
Coordinator to the named advisor must be completed following identification of a Dissertation Chair.

The student, in consultation with his/her Dissertation Chair, will identify the other members of the
Dissertation Committee. Committee members are those who have expertise in and inform the student’s
area of research, serve as a reader of the proposal and dissertation, and vote on the outcome of the
qualifying exam, proposal defense and outcome of final dissertation. A minimum of three individuals must
serve on the final Dissertation Committee. At least two members of this committee, including the Chair,
must be full-time members of UTHealth SBMI faculty.

Students are responsible for scheduling and planning meetings with their committee and meeting
milestones defined by this catalog. Student course selection must be approved by the Committee Chair
and appropriately documented on the PhD Degree Plan form (available on the SBMI Current Students
section of the website). Students are encouraged to meet with their advising committee during the course
of each semester to discuss ongoing progress and formulate plans for acceptable academic progress.

Transfer Credit
Transfer credit for equivalent graduate courses taken elsewhere may be awarded and used to meet
degree requirements if their equivalency to a SBMI degree program course is approved through a Petition
for Equivalency Credit (PEC). The maximum number of transferable semester credit hours is 36 for the
PhD program. Contact the SBMI Office of Academic Affairs for information.

Courses that are being accepted at SBMI through a dual or joint degree program can only be transferred
in if the grade earned in the course is a “B” or higher. Courses for which grades of less than “B” were
earned will not be accepted for transfer and will require a retake.

Students who are presenting course work from universities or colleges outside the United States
to meet admission or graduation requirements are referred to the section on International Applicants in
this catalog for a listing of additional requirements.

Financial Assistance

SBMI offers full-ride scholarships for Ph.D. students that include tuition support during the first year of
academic study. These competitive scholarships are limited and offered to the most qualified Ph.D.
program applicants. Graduate Research Assistantships and Student Teaching Assistantships are available
on a case-by-case basis. Students must submit and application to be considered for these opportunities.
Degree Requirements for the Doctor of Philosophy in Biomedical Informatics

PhD Academic Requirements

A total of 93 semester credit hours must be completed prior to graduation. A full-time student in the PhD Program in Biomedical Informatics has up to eight years from the time of entry to complete the required coursework. Continuous enrollment is required unless approval from the advising committee is obtained. A maximum of one year of an approved leave of absence will be allowed for continuance in the program. If more than one year of leave occurs, the student must apply for readmission to the program.

A maximum of six credit hours of Directed Study can be applied toward the PhD program.

Other Requirements

In Residence Requirement: The term “in residence” refers to the requirement that a student completes 57 semester credit hours over the course of the program at UTHealth. A student must fulfill his or her in residence requirement in order to receive a PhD degree from the School.

Course of Study for the Doctor of Philosophy in Biomedical Informatics Program

The curriculum of the PhD degree in Biomedical Informatics includes required didactic courses and elective courses. Didactic courses (lecture/discussion, demonstration and student laboratories) are presented to provide facts, concepts, and theories related to the techniques, and procedures of Biomedical Informatics. They include instruction in basic informatics, research, advanced informatics and support courses. The elective courses are designed to give students the opportunity to apply theory and techniques in the hospital, research, or private laboratory setting.

Required Courses from SBMI catalog

The following courses are required for the PhD degree plan. Courses indicated with * must be completed prior to the qualifying exam. Requirements for these courses can be met through concurrent enrollment at other institutions and/or by consent of the student’s Academic Advisor.

BMI 5300 Introduction to Biomedical Informatics* (3 credit hours)
BMI 5007 Methods in Health Data Science* (3 credit hours)
BMI 5310 Foundations of Biomedical Information Sciences I* (3 credit hours)
BMI 5311 Foundations of Biomedical Information Sciences II* (3 credit hours)
BMI 5351 Research Design and Evaluation in BMI* (3 credit hours)
BMI 5353 Statistical Methods in BMI* (3 credit hours) or PH 1690 Foundations of Biostatistics in Public Health* (4 credit hours)
BMI 7301 Grant Writing (3 credit hours)
Core Competencies

The following PhD only courses are required for the PhD degree plan. Courses indicated with * must be completed prior to the qualifying exam. Requirements for these courses can be met through concurrent enrollment at other institutions and/or by consent of the student’s Academic Advisor.

BMI 6319 Advanced Data Structures in Biomedical Informatics* (3 credit hours)
BMI 7302 Theories and Frameworks for Biomedical Informatics Research* (3 credit hours)
BMI 7303 Critical Review of Biomedical Informatics Literature Seminar* (3 credit hours)
BMI 7304 Advanced Research Design for Biomedical Informatics* (3 credit hours)
Higher-level stats* Not offered at SBMI – See Advisor for concurrent enrollment options.

The PhD Program requires at a minimum 93 semester hours of study including 9 semester hours in preceptorship courses, 21 credit hours in a specific research area approved by the advisor, 3 credit hours of research seminar and 9 semester hours dedicated to the dissertation.

Progression

Each year, students will be reviewed by the faculty to determine if adequate progress in the program has been made. This review is facilitated by the completion of annual Individualized Development Plans (IDP). It is the student’s responsibility to maintain and update this plan in cooperation with their advisor. IDPs are filed annually with the SBMI Office of Academic Affairs. Failure to make adequate progress will result in action by the Admission, Progression and Graduation Committee. Action may include, but is not limited to additional review and monitoring of progress, changes in student standing (at risk, on probation, etc.) or dismissal from the program.

Qualifying Exam

The goals of the PhD qualifying exam are:

1. To motivate students to review and synthesize course work and reported research
2. To determine the student’s ability to understand and apply fundamental concepts
3. To develop and test the student’s ability to communicate orally and to respond to questions and comments
4. To evaluate the student’s potential to pursue doctoral research
5. To identify areas needing strengthening for the student to be successful as a PhD student and independent scholar
6. To provide a mechanism for faculty to come to know the student’s capabilities

Students should prepare for a comprehensive qualifying exam within the semester following their sixth completed full-time semester or after completion of their 48th semester credit hour. The plan for the qualifying exam will be developed in conjunction with the academic advisor. The qualifying exam consists of demonstration of competency with both:
Domain Specific Knowledge
Demonstration knowledge, understanding, and proficiency in domain specific content and methodology. One of the purposes is to challenge students to discover relevant literature and deepen their knowledge of interests within this track.

Breadth of Knowledge across the discipline
Demonstrate breadth of knowledge across health sciences disciplines through questions that require synthesis of knowledge from core areas.

General Structure of the Exam

1. Topics for the exam will include materials covered in the Core Courses (indicated by *) and materials selected within a specific domain. The domain specific reading list will be developed in conjunction with the Committee Chair/Advising Committee.
2. Students will complete a written exam including both domain general and domain specific questions.
3. In addition to the exam, students will prepare a proposal abstract (1-2 pages) and deliver a public presentation of this abstract.
4. Following the written exam and public presentation, the student and Dissertation Committee will take part in a closed question and answer session (1-2 hours) over the written exam and public presentation.

Submission deadlines related to materials related for the qualifying exam (e.g. reading list, abstract/proposal to committee) will follow a set timeline following the student’s declaration of intent. All components of the qualifying exam must be attempted within 30 days.

The qualifying exam dossier will contain the following items:
- a) Research project abstract
- b) Preliminary dissertation proposal (one to two pages, demonstrating knowledge and work of the student and others, synthesized to present a rationale for the proposed dissertation topic (e.g., theory to be developed, hypotheses to be tested) as well as proposed methodology to fulfill the dissertation objective.)
- c) List of references (30-50 articles) and syllabi for relevant classes for three domain areas related to their proposed research. Students should discuss these areas with their advisor in the process of planning their graduate program and prior to preparation of their qualifying exam materials.
- d) Current CV
- e) All previously completed Individualized Development Plans

Grading: The Advising Committee will assign one of the following grades to the overall qualifying exam:
- a) Pass unconditionally
- b) Pass conditionally (Advising Committee together with the Admissions, Progression, and Graduation Committee to specify the conditions needed to pass, such as remedial coursework needed)
- c) Fail with option to retake
- d) Fail without option to retake
A student must be successful on each element of the progression exam to achieve pass unconditionally. Each component will be scored as pass/fail only based on its entirety (i.e. you cannot conditionally pass or pass only a portion of the written or oral Q/A). The Dissertation Committee decision will determine the specific requirements for options of a conditional pass or options to retake (e.g. retake the written and the oral, oral only, remediate with additional coursework.)

Students will be allowed to retake any portion of the exam once. Efforts to retake the progression sequence must be completed within 12 weeks. Failure to progress after this point will result in dismissal from the program.

**Advanced Preceptorship**

Advanced Preceptorship is required for all PhD students. During Advanced Preceptorship, the student will develop and prepare his or her Advance to Candidacy Proposal including: defining the proposed research agenda; a review of the literature; research design, procedure and data analysis; collecting preliminary data; and scientific contribution to the discipline. The student’s primary advisor and advising committee must approve the focus of the research.

**Advancement to Candidacy**

Admission to the PhD program does not constitute or guarantee a student’s admission to candidacy for the PhD degree. Within two full-time semesters or completion of 18 semester credit hours after completion of the qualifying exam, each student must submit an advance to candidacy proposal and give an oral presentation of their completed and proposed work to their Advising Committee. Successful advance to candidacy proposal defense includes approval of both the written proposal and its oral presentation. Approval of the advance to candidacy proposal is required for continued progress towards the degree and designation as a doctoral candidate.

A student passes their advance to candidacy proposal defense if the majority of their Advising Committee votes to pass and the student’s primary advisor votes to pass. In the event of a tie, the Associate Dean of Academic Affairs will break the tie. If the Associate Dean of Academic Affairs is on the committee, the Committee Chair will break the tie. If the Associate Dean of Academic Affairs is the Committee Chair, the Dean will break the tie. If the student passes, he or she is admitted to candidacy. If the student does not pass, the Advising Committee can recommend failure without another attempt or failure with the opportunity to re-defend within 30 days. If the student again does not pass the defense, he or she will be given the option of completing a Master of Science in Biomedical Informatics degree, but will otherwise be dismissed from the doctoral program.

**Dissertation**

The faculty believes that communication and dissemination is a critical aspect of the research process. The student will have two options available for the dissertation. The first option will consist of three articles that are accepted for publication. Publication must be in journals or proceedings, which are both, peer reviewed and indexed for academic retrieval. The three papers are combined with an introduction and summary and bound as a dissertation. The second option requires the student to write a monograph...
or dissertation. The monograph will review the literature, research approaches and options, the data design and gathering processes. The findings and data will be discussed in the context of the published literature. The monograph will be bound.

The dissertation must be presented at an oral defense that is open to the public. All research papers, theses, and dissertations authored by degree candidates are available to interested members of the general public upon request. After the presentation, the student’s Advising Committee votes to award the degree, allow for re-defense of the dissertation within 30 calendar days of the failed attempt, or dismiss the student from the program without a degree.

**Petitioning for Extension**

Students who have exceeded their time to degree deadline or a milestone deadline for the qualifying exam or prospectus may petition APG for an extension. The Petition to Extend Time Boundary for Qualifying Exam, Advance to Candidacy or Dissertation Defense form can be found under the Current Student section of the SBMI website.

**For further curriculum information, contact:**

UTHealth School of Biomedical Informatics  
Office of Academic Affairs  
7000 Fannin Street Suite 650  
Houston, Texas 77030  
Telephone: (713) 500-3591  
Email: SBMIAcademics@uth.tmc.edu
Program Description and Goals

The MPH/PhD dual degree program combines the MPH from The University of Texas School of Public Health at Houston with the PhD degree from The University of Texas School of Biomedical Informatics at Houston. The training and curriculum in the dual degree program will provide students and future leaders in public health the necessary skills to be leaders in the field of public health informatics. The dual degree program provides an integrated curriculum that includes a number of shared courses as well as a practicum experience and/or the thesis topic in the area of public health informatics. The selection of specific academic programs and scheduling of specific courses, fieldwork, and practica for individual students is guided by an academic advisor from SBMI and an advising committee, which can include faculty from both UTHealth schools.

The PhD part of the program in Biomedical Informatics is conceptualized and designed to be inherently multi-disciplinary and integrative. This means that the fundamental informatics concepts that transcend and apply to all traditional healthcare disciplines will be emphasized in the PhD program. This program will identify and teach the major informatics concepts that integrate and link diverse health disciplines.

The PhD program in Biomedical Informatics is constructed as a post-baccalaureate degree that not only addresses the knowledge and skills that the student brings at admission, but allows the student to build on previous knowledge and skills in order to attain the research focus needed for the completion of the PhD program in Biomedical Informatics.

Formal study of informatics at the PhD level at UTHealth is designed to accomplish these major goals:

- Expand the scope of the discipline of Biomedical Informatics
- Demonstrate familiarity with the Biomedical Informatics research literature, including in-depth knowledge of a selected Biomedical Informatics research area.
- Research and evaluate new regions or domains in Biomedical Informatics
- Lead interdisciplinary teams in the search for solutions to Biomedical Informatics problems
- Effectively communicate research findings to peers and to practitioners who can use the research findings.

Students in the dual degree program must be admitted separately to each UTHealth school. Students must meet the requirements of each UTHealth school for its respective degree. Admission to one program does not ensure admission to the other. Students in the dual degree program will receive a diploma from each degree program after meeting the individual requirements of each UTHealth school. Admission does not have to be done at the same semester for each school, but must be done before reaching the maximum hours set by each school.
<table>
<thead>
<tr>
<th>Program</th>
<th>Required Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhD in Biomedical Informatics (PhD)</td>
<td>93</td>
</tr>
<tr>
<td>Master’s in Public Health (MPH)</td>
<td>45</td>
</tr>
<tr>
<td>Total Semester Credits</td>
<td>138</td>
</tr>
<tr>
<td>Shared Courses</td>
<td>-24</td>
</tr>
<tr>
<td>GRAND TOTAL FOR COMBINED DEGREES</td>
<td>114</td>
</tr>
</tbody>
</table>

**Dual Degree Application Process**

Students in the dual degree program must be admitted separately to each UTHealth school. The application process for the Master of Public Health is determined by the School of Public Health, so students must contact the School of Public Health Student Affairs office for details. The application process for the Doctor of Philosophy in Biomedical Informatics is determined by the School of Biomedical Informatics. Refer to the standard PhD program application process.

**Transfer Credit**

Transfer credit is not accepted for students enrolled in the dual degree program due to the amount of shared credit hours between SBMI and SPH.

**Shared Credit Hours**

Courses that are being accepted at SBMI through a dual or joint degree program can only be transferred into the SBMI degree plan if the grade earned in the course is a “B” or higher. Courses for which grades of less than “B” were earned will not be accepted for transfer and will require a retake.

**Financial Assistance**

Financial assistance packages and research assistantships will be available to all students on a competitive basis to facilitate full-time doctoral education.

**Degree Requirements for the Doctor of Philosophy in Biomedical Informatics**

Refer to page 56 of this catalog for the Degree Requirements, Course of Study, Prerequisites, Additional Required Courses, Core Competencies, Progression, Qualifying Exam,

Advanced Preceptorship, Advancement to Candidacy, Dissertation, Petitioning for Extension policies for the PhD in Biomedical Informatics.
Program Description and Goals

The program is the nation’s first advanced practice degree in health informatics. The DHI includes unique curriculum built for professionals seeking a terminal degree in the field of health informatics.

The degree is geared towards professionals with documented executive or management-level healthcare experience. This practice doctorate program provides informatics leaders with the advanced education required to translate evidence from original research, evaluate current practices, and utilize critical thinking to accelerate the adoption of best practices in clinical and healthcare organizations.

Instruction for the program is in a hybrid environment with more than 50% of the coursework taught online. After completing necessary didactic courses, DHI students must complete a large-scale translational project at a healthcare organization. Students work under advisor guidance while completing the project, so students have the opportunity to translate evidence from original research and accelerate the adoption of best health informatics practices.

The program goals are:

- Assume leadership positions throughout the healthcare industry having integrated health informatics with organizational leadership and ethics.
- Design, implement and evaluate health information technology quality improvement projects in health care systems.
- Implement evidence-based practice to improve human health.
- Employ effective communication and collaboration skills to identify and implement best practices in health care delivery.

Doctorate in Health Informatics Admission Process

The applicant should present a completed application and official documentation of the following:

1. Official transcripts from every post-secondary school attended
2. A baccalaureate or higher degree (master's degree preferred)
3. Cumulative GPA of 3.0 or higher
4. A resume or curriculum vitae
5. A Graduate Record Exam (GRE) score. GRE waivers will not be considered for the DHI program application. Official GRE test scores must be no more than five (5) years old.
6. For international applicants, a minimum TOEFL score of 87 is acceptable on the internet-based test. A minimum IELTS score is 7. F-1 sponsorship is not available for students in the DHI program.
7. Submit a three-page single spaced personal statement that addresses the following items:
   a. A brief summary of your background in all relevant fields including management or executive level healthcare experience.
b. A statement of the applicant’s short and long-term career objectives, including specific information regarding short-term objectives. Be sure to include how those objectives fit the opportunities provided by the SBMI educational environments.

8. Proposed area of interest for translational practice project

9. A Letter of Support from the healthcare organization willing to facilitate the translational practice project. The Letter of Support must be on the healthcare organization’s official letterhead. The Letter of Support should not be from the same person as a Letter of Recommendation. The Letter of Support should include, background on the healthcare organization (including the indication of size and the type of activities), the area the institution expects the student to perform the project in, whether or not if the organization will provide any type of support (monetary or technical) for the applicant’s project.

10. Three letters of reference from supervisors or colleagues. At least two letters should be from supervisors

11. Interview with the SBMI Admissions, Progression and Graduation (APG) Committee by invitation only

**Doctorate in Health Informatics application deadlines:**

<table>
<thead>
<tr>
<th>Admission</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>March 1</td>
</tr>
<tr>
<td>Spring</td>
<td>July 1</td>
</tr>
<tr>
<td>Summer</td>
<td>November 1</td>
</tr>
</tbody>
</table>

**Transfer Credit**

Transfer credit for equivalent graduate courses taken elsewhere may be awarded and used to meet degree requirements if their equivalency to a SBMI degree program course is approved through a Petition for Equivalency Credit (PEC). The maximum number of transferable semester credit hours is 21 for the DHI program. Contact the SBMI Office of Academic Affairs for information.

Courses that are being accepted at SBMI through a dual or joint degree program can only be transferred in if the grade earned in the course is a “B” or higher. Courses for which grades of less than “B” were earned will not be accepted for transfer and will require a retake.

Students who are presenting course work from universities or colleges outside the United States to meet admission or graduation requirements are referred to the section on International Applicants in this catalog for a listing of additional requirements.

**Degree Requirements for the Doctorate in Health Informatics**

**Academic Requirements**

Students without a master’s degree in health informatics, or a related field, must complete 33 semester credit hours of didactic coursework before starting the DHI curriculum. Students who hold a master’s degree in informatics can immediately start the 63 semester credit hour program.
A part-time student has up to ten years (30 semesters) from the time of entry to complete the required course work. Continuous enrollment is required unless approval is obtained. A maximum of one year of an approved leave of absence will be allowed for continuance in the program. If more than one year of leave occurs, the student must apply for readmission to the program.

Each course with a BMI prefix in the Biomedical Informatics degree plan is a graduate level, professional course and must be passed with a grade of “B” or better. Students must earn a grade of “B” or higher in all dual degree program courses, unless the course is graded on a Pass or Fail basis in which a grade of “Pass” must be earned. If a dual degree student earns less than a “B” in any required course, it must be retaken to continue in the program. A grade of “B” or higher must be earned on the second attempt to prevent dismissal from the program. The minimum grade point average (GPA) required for graduation is 3.0 on all BMI courses.

**Computer Requirement**

Every student is required to have reliable access to a computer that meets the minimum requirements. Students are encouraged to purchase a laptop that meets the minimum UTHealth requirements. Computer requirements are listed on the website (sbmi.uth.edu/current-students/student-handbook/computer-requirements.htm) and are subject to change.

**Course of Study for the Doctorate in Health Informatics**

The DHI program requires a minimum of 63 semester credit hours to earn the degree, for applicants with a master’s degree in the field of health informatics. This includes 30 semester credit hours of required courses and 33 semester credit hours of coursework focused on translational project advisement and evaluation and fellowship.

For those entering the program with only a bachelor’s degree, the program requires the completion of 96 semester credit hours of SBMI coursework. This includes 63 semester credit hours of required courses and 33 semester credit hours of coursework focused on translational project advisement and evaluation and fellowship.

**Translational Project**

The DHI culminates with a translational project and a project evaluation report. Students in the program will work on didactic courses and translational project work simultaneously. Students identify a project, primary advisor during the first semester of study and invite two additional committee members during the second semester.

The Project Advisement course is taken as the student works with an advisor and committee to prepare the project plan. At the end of the student’s first year, a tentative timeline for the completion of the DHI program and translational project must be submitted.

The translational project requires:
• Background and review of relevant literature/evidence
• Project overview
• Theoretical framework/logic model
• Purpose statement/significance of project
• Evaluation design, including return on investment
• Implementation/gather evidence
• Recommendations
• Future implications

After completing the translational project, the student must present the findings. The presentation must be presented at an oral session that is open to the public. Translational project documents authored by degree candidates are available to interested members of the general public upon request. After the presentation, the translational project committee votes to pass or fail the student. If the student passes and all other degree requirements are met, the translational project committee makes its recommendation for the degree to be awarded.

For further curriculum information, please contact:

UTHealth School of Biomedical Informatics Office of Academic Affairs
7000 Fannin Street Suite 650
Houston, Texas 77030
Telephone: (713) 500-3591
Email: SBMIAcademics@uth.tmc.edu
Course Descriptions

(Course descriptions are not intended as an assurance or warranty of achievement of specific skills or knowledge.)

BMI 5001 Special Topics in Biomedical Informatics
3 semester credit hours/meets part of the basic informatics competencies
Web-based and classroom instruction

This course provides a timely way to examine cutting-edge topics of interest to students and faculty. The varying content may include topics such as: technical writing in Biomedical Informatics, comparing knowledge use across disciplines, and computational knowledge methods in Biomedical Informatics. This course may be repeated as topics vary.

BMI 5004 Introduction to Clinical Healthcare
3 semester credit hours/meets part of the basic informatics competencies
Lecture contact hours: 2; Lab contact hours: 3
Classroom instruction
Prerequisite: Consent of instructor
Lab Fee: $30

This course will present a survey of modern American clinical health care for students without a health care background who are entering fields that interact with health care such as biomedical informatics, cancer biology, and translational science. It is not a health care system course and is not intended to teach students how to practice medicine. The course is not appropriate for students who have a health care background (e.g., international medical graduates). We will focus on how clinical health care is delivered, rather than on health care financing, administration, regulation or governance. Students will attend lectures and “mini rotations” during which they will visit operational health care settings including outpatient clinics (pediatric and adult), emergency departments, intensive care units, clinical research and surgical settings. Major medical specialties including pediatrics, emergency medicine, internal medicine, radiology, etc. are presented. Students will interact with a variety of clinical practitioners.

BMI 5007 Methods in Health Data Science
3 semester credit hours/meets part of the basic informatics competencies
Web-based and classroom instruction
Lab Fee: $30

This course is one of the core competency courses for biomedical informatics at SBMI. It is tailored for those students who would like to solidify or further develop their computer science and programming skills necessary for their biomedical informatics graduate program studies. We will use Python as a vehicle to study essential concepts and skills in data structures and algorithms, and their applications in biomedical informatics. Access to a computer is required and students should expect a reasonable amount of programming assignments. By the end of the semester students should have obtained a solid
foundation and necessary computer science skills to tackle challenging problems in biomedical informatics.

**BMI 5300 Introduction to Biomedical Informatics**  
3 semester credit hours/meets part of basic informatics competencies  
Web-based and classroom instruction  
Lab Fee: $30

This introductory graduate level survey course provides an overview of Biomedical Informatics and Health Information Technology and introduces the student to the major areas of the evolving discipline. The competencies for graduate education in the discipline are presented as well as the definitions of biomedical informatics. A systems framework for understanding informatics is also considered. The course focuses on the application of health information technology for healthcare delivery, education and research as well as the multidisciplinary nature of biomedical informatics. The knowledge and skills presented in this course will help the student progress to other more advanced or specialized courses throughout the curriculum since an understanding of health care, health information technology and recent governmental efforts is necessary in order to function in the biomedical informatics discipline.

**BMI 5301 The U.S. Healthcare System**  
3 semester credit hours/meets part of the basic informatics competencies  
Web-based and classroom instruction

This course will present a survey of the modern American health care system. The course will focus on the major pieces of legislation that serve as the foundation of the current U.S. health care structures. Topics in the course will include Medicare, Medicaid, and HIPAA, their impacts on financing, health care access and professional roles. The course will integrate current legislative actions, public concerns, implications, and discussions surrounding health care reform.

**BMI 5302 Introduction to Human Factors in Healthcare**  
3 semester credit hours/meets part of basic informatics competencies  
Web-based and classroom instruction  
Lecture contact hours: 2; Lab contact hours: 3  
Lab Fee: $30

This course is an introduction to cognitive science – the interdisciplinary study of mind and behavior from an information processing perspective – and its application to Biomedical Informatics. The course begins with a basic introduction to human cognition and information processing (both symbolic and connectionist), then presents a broad survey of the Biomedical Informatics areas to which cognitive science has been applied. These areas include health problem solving and education, decision support systems, user-centered interfaces, and the design and use of controlled medical terminologies.
BMI 5304 Advanced Database Concepts in Biomedical Informatics
3 semester credit hours/meets part of research informatics competencies
Web-based and classroom instruction
Lecture contact hours: 2; Lab contact hours: 3
Prerequisite: BMI 5007
Lab Fee: $30
In this course, students will use both relational and object-oriented databases to model aspects of health care delivery. Working in teams, students will analyze a practical problem related to a clinical health care situation and model the necessary information into a data model. Development of the data model will include the use of CASE tools. The data model will be discussed with health professionals in clinical practice for relevance and accuracy. The feedback from the clinical area will be used to the models and to evaluate the development process.

BMI 5305 Legal and Ethical Aspects of Biomedical Informatics
3 semester credit hours/meets part of the basic informatics competencies
Web-based instruction
Lab Fee: $30
Biomedical Informatics involves rapidly changing technology, which impacts the way in which legal and ethical considerations are understood in our culture. This course will examine the relationships between law and ethics. Particular considerations will be given to the concepts of privacy, autonomy, responsibility and decision-making. These concepts will be discussed from both legal and ethical perspectives in the policy and regulatory arena. The impact of current and future technology, such as patient portals and social media, will be discussed as it relates to these concepts and the impact on Biomedical Informatics.

BMI 5306 Security for Health Information Systems
3 semester credit hours/meets part of the basic informatics competencies
Web-based instruction
This course will address security issues as they impact health information systems. Physical security of the hardware and software including redundancy, back up and restricted access will be discussed. Security and appropriateness of access will be addressed in terms of both hardware and software solutions. Data integrity, audit ability and system integrity will be considered along with the unique problems, such as the hacking of implantable devices, wired, wireless, and cellular networks, as well as the challenges of personally owned devices. Solutions to these concerns will be discussed in terms of industry standards, those that already exist, and those that are still evolving. Compliance with the HIPAA Security Rule, including the requirement for an annual risk analysis, will be covered. Students will write and evaluate policies, analyze security regulations, and conduct a mock risk analysis.
BMI 5310 Foundations of Biomedical Information Sciences I
3 semester credit hours/meets part of foundations competencies
Web-based and classroom instruction
Prerequisite: BMI 5300 or consent of instructor
Lab Fee: $30

This course provides an overview of topics, concepts, theories and methods that form the foundations of biomedical information sciences. It gives students the fundamental knowledge and skills to pursue further study in biomedical informatics. Foundations I presents a general framework for health information science as the construction and use of symbolic, mathematical, and computational models for solving problems throughout the range of biomedical science, from genetics to clinical care to public health. It covers concepts, theories and methods that deal with how biomedical information is acquired, discovered, represented, managed, organized, communicated, retrieved, and processed. It also provides an overview of the primary research and application areas in health information science.

BMI 5311 Foundations of Biomedical Information Sciences II
3 semester credit hours/meets part of foundations competencies
Web-based and classroom instruction
Prerequisite: BMI 5310
Lab Fee: $30

This course provides an overview of theories and methods that are broadly applicable to all health informaticians. It gives students the theoretical and methodological background needed to pursue study in Biomedical Informatics. The course begins with theories of information from computational, philosophical, mathematical, logical and biomedical perspectives.

BMI 5313 Foundations of Electronic Health Records and Clinical Information Systems
3 semester credit hours/meets part of basic informatics competencies
Lecture contact hours: 2; Lab contact hours: 3
Web-based and classroom instruction
Lab Fee: $30

This course is designed to provide informatics students with an overview of the key concepts regarding implementation of a clinically-oriented information system (e.g., an electronic medical record, computer-based provider order entry). The course will examine how health data are collected, how they are used and the impact of electronic records on the health data. The course will review standards, standards development, languages used, usability and issues related to information processing in health care. The course will review the impact of electronic records and patient portals on health and health care including, legal, financial, and clinical design issues. Challenges encountered during training and go-live will be discussed. Students will receive hands-on experience with an electronic health record in the training environment.
BMI 5314 Technology Assessment in Healthcare  
3 semester credit hours/meets part of basic informatics competencies  
Web-based instruction  

This course will focus on methods and processes to evaluate positive and negative impacts of various techniques, technologies and interventions in health care. The focus will be standard approaches for measuring various outcomes, and development and evaluation of technology assessment models. The course will also focus on merging multiple measures outcomes measurement to conduct unified approach to evaluate the effectiveness of planned / implemented technologies, or to compare different options. Finally, the course will explore tools/software for the technology assessment. In this course, "Technology in Health care" will be used in a very broad sense, encompassing all interventions, equipment, treatment, etc., that are used in the health care field to care for consumers.

BMI 5315 Quality and Outcome Improvement in Healthcare  
3 semester credit hours/meets part of basic informatics competencies  
Web-based instruction  
Prerequisite: Basic statistics knowledge  

This introductory course provides an overview to health care quality from the view of information science and the discipline of informatics. It takes a patient-centered approach that covers the complexities of quality and the scientific basis for understanding the measurement and improvement of quality, including exposure to multiple measures from a variety of organizations and measure comparison sites such as Medicare Compare. It provides the learner with a framework for key theories and concepts and models of quality improvement. Students will be introduced to health information technology safety issues, including tools for operationalizing HIT safety. Learners will be introduced to data quality, the challenges of data from devices and e-quality measures, as well as experience the challenge of calculating quality measures with data from the EHR. The merging of quality outcomes with evolving reimbursement paradigms and models will be examined.

BMI 5317 Applied Data Management  
3 semester credit hours/meets part of basic informatics competencies  
Web-based instruction  
Prerequisite: BMI 5300  

This course is an introduction to common data management issues encountered in the health care organization. The course will include identifying data management needs and potential solutions to meet the needs such as data dictionaries, data quality improvement, data and information governance, among others. Students will also learn the basics of relational database structure through a variety of hands-on exercises and projects.
**BMI 5327 Standards in Biomedical Informatics**  
3 semester credit hours/meets part of the basic informatics competencies  
Web-based instruction

Unlike much of the world, American health care standards are frequently developed by private organizations rather than the government. The Standards Development Organizations (SDOs) create an alphabet soup of organizations that are often not well known to people within health care, let alone those just entering the field. This course will explore the history of a variety of SDOs, examining their membership and focus domain. Students will examine the role of the major SDOs and their impact on the structure and function of health care delivery in the United States. The relationship between U.S. and international standards organizations will be reviewed.

**BMI 5328 Systems Analysis and Project Management**  
3 semester credit hours /meets part of the basic informatics competencies  
Web-based instruction

This course is an introduction to both systems analysis and project management. The student will have the opportunity to learn more about the approaches and tools available for systems analysis. Additionally, the student will learn more about the roles, responsibilities, and duties of a project manager. Moreover, the student will learn project management methods and the core activities of a project manager as well as the tools and techniques required to ensure the success of a large health care information technology project such as the implementation of a system or the evaluation of an existing system. Specific emphasis will be on training and support during go-live, total costing of projects, and explicit change management techniques.

**BMI 5329 Workflow Process Modeling**  
3 semester credit hours/meets part of the basic informatics competencies  
Web-based Instruction  
Lab Fee: $30

Students in this course will learn how to identify and assess different aspects of health care systems and health care workflow as well as how to evaluate a health information system. Students will learn the skills needed to assess and help improve workflow and the quality of health care delivery, with a special emphasis on optimization after implementation. Students will also be introduced to different methods of evaluation and how they would apply to health information systems, as well as the use of health information systems themselves.

**BMI 5330 Introduction to Bioinformatics**  
3 semester credit hours/meets part of basic informatics competencies  
Web-based and classroom instruction

The course gives a comprehensive entry-level introduction to bioinformatics. It covers a wide variety of topics in bioinformatics, including but not limited to genome analysis, transcription profiling, protein structure and proteomics. Two major goals are 1) to help students understand the scope, basic concepts and theory of bioinformatics; and 2) to become familiar with tools for bioinformatics-related data analysis.
Using software tools will be a major component of the course but advanced programming skills are not required. A laptop computer is necessary to use the bioinformatics software and tools in class and while performing the research tasks for the course project.

**BMI 5331 Foundations of Pharmacogenomics**  
3 semester credit hours/meets part of research informatics competencies  
Prerequisite: BMI 5330  
Web-based and classroom instruction  
Lab Fee: $30

Pharmacogenomics is the study of how human genetic variation impacts drug response. It is one of the major promises of the genome project: that individual genetic information can be used to tailor drugs to patients, maximizing efficacy and minimizing adverse reactions. An understanding of pharmacogenomics requires dual understanding of the basics of genetics and genomics and of pharmacology. This course will provide the background to understand the current state and literature in pharmacogenomics, including the methods used in research and the current issues in discovery and implementation of pharmacogenomics.

**BMI 5332 Statistical Analysis of Genomic Data**  
3 semester credit hours/meets part of research informatics competencies  
Prerequisites: BMI 5330 and BMI 5352  
Web-based and classroom instruction  
Lab Fee: $30

This course provides students practical skills and statistical concepts and methods that underlie the analysis of high-dimensional genomic and Omics big data generated by high throughput technologies. It will also address issues related to the experimental design and implementation of these technologies. Lectures will often be delivered with live demonstrations. Students will engage in practical problem solving sessions. The R language will be used for programming throughout the course.

**BMI 5333 Systems Medicine: Principles and Practice**  
3 semester credit hours/meets part of research informatics competencies  
Prerequisites: BMI 5330 and BMI 5352  
Web-based and classroom instruction  
Lab Fee: $30

Systems medicine is an interdisciplinary field of study that looks at the systems of the human body as part of an integrated whole, incorporating biochemical, physiological, and environment interactions. Systems medicine draws on systems science, omics, imaging, systems biology, and considers complex interactions within the human body in light of a patient's genomics, behavior and environment, and design the precision medicine at systems level. Students will engage in hands-on projects exploring methods of systems medicine.
**BMI 5351 Research Design and Evaluation in Biomedical Informatics**
3 semester credit hours/meets part of research informatics competencies
Web-based and classroom instruction
Lab Fee: $30

This course provides the student the opportunity to develop more advanced competencies in the design, analysis, interpretation and critical evaluation of experimental, quasi-experimental, pre-experimental and qualitative biomedical informatics research and evaluation studies. The student will identify flaws or weaknesses in research and evaluation designs, choose which of several designs most appropriately tests a stated hypothesis or controls variables potentially jeopardizing validity, and analyze and interpret research and evaluation results. Through exposure to the basic “building block” designs, students will have the opportunity to develop the competence to appropriately choose and use the most important and frequently used design procedures for single or multifactor research or evaluation studies.

**BMI 5352 Statistical Methods in Biomedical Informatics**
3 semester credit hours/meets part of research informatics competencies
Web-based and classroom instruction
Lab Fee: $30

This course provides the student the opportunity to develop essential competencies in the measurement, design, analysis, interpretation and critical evaluation of health, information, and behavioral science research and evaluation studies. Students will have the opportunity to learn and apply the most important and most frequently used statistical measures and methods, as well as critically evaluate their appropriate use. Topics include the study of frequency distributions, measures of central tendency, variance, hypothesis testing, correlation and both parametric and non-parametric inferential methods including t-tests, analysis of variance, chi-square, Kruskal-Wallis, Mann-Whitney, and Wilcoxon tests of significance, as well as tests of measures of association.

**BMI 5353 Biomedical Informatics Data Analysis**
3 semester credit hours/meets part of research informatics competencies
Lecture contact hours: 2; Lab contact hours: 3
Web-based and classroom instruction
Prerequisite: BMI 5351 or BMI 5352 or consent of instructor
Lab Fee: $30

This course provides the student the opportunity to know when and how to use state-of-the-art data analysis computer software to perform each of a comprehensive set of the most important and frequently used data analysis techniques for research and evaluation in biomedical informatics. The student will choose the most appropriate data analysis tools to perform qualitative, descriptive, inferential, parametric, non-parametric, multifactor and multivariate techniques, as well as graphical data modeling analytic techniques using the computer. Qualitative data analysis and related software will demonstrate alternate methods for data collection and reduction.
BMI 5354 Cognitive Engineering in Biomedical Informatics
3 semester credit hours/meets part of research informatics competencies
Lecture contact hours: 2; Lab contact hours: 3
Web-based and classroom instruction
Prerequisite: BMI 5302 or consent of instructor
Lab Fee: $30

This course focuses on cognitive engineering techniques for designing user-centered health information systems. Such systems provide appropriate functionality to the user, are easy to use and learn, reduce the chance of user error, and increase user efficiency. The course emphasizes how human cognitive abilities and limitations impose requirements on the design of effective interfaces. It covers the theory and practical application of several cognitive engineering techniques, including cognitive task analysis, verbal protocol analysis, propositional analysis and cognitive walkthroughs.

BMI 5360 Clinical Decision Support Systems
3 semester credit hours/meets part of the basic informatics competencies
Web-based instruction

This course is designed to provide an overview of decision support systems in health care, with a particular emphasis on design, evaluation and application of clinical decision support systems (CDSS) across all health care settings – in-patient, ambulatory care, long-term care, pharmacy, etc. The course explores the background and features of CDSS. Students will understand the mathematical foundations of knowledge-based systems, learn to identify areas which might benefit from a decision support system, evaluate the challenges surrounding development and implementation and consider issues of CDSS appropriateness and usability. The course also includes a detailed discussion of issues in clinical vocabularies and other important issues in the development and use of CDSS, and provides guidance on the use of decision support tools for patients. Students will have hands-on experience with EHR CDSS modification.

BMI 5361 Informatics for Clinical Researchers
2 semester credit hours/meets part of research informatics competencies
Web-based instruction
Prerequisite: Consent of instructor

This course will train the next generation of clinical researchers in the basics of clinical information systems (CIS). Students will be introduced to the skills needed to both use the data that is derived from these systems as well as understand the issues surrounding the design, development, implementation, and evaluation of CIS-based interventions.
BMI 5371 Business and Technical Writing
3 semester credit hours/meets part of the advanced informatics competencies
Web-based instruction
Class limited to 15 students

This course provides the advanced skills necessary to write a full range of business documents, including letters, memos, emails, technical and non-technical user guides, training documentation, system documentation and application tip sheets, as well as policy, governance, and decision briefs. The reason for and appropriate uses of each of these types of documents will be examined. There will also be an introduction to scientific writing, which will be compared and contrasted with business writing. Students will also learn to evaluate literature and evidence for publication bias and appropriateness. The course covers the purpose of each of these components, discusses properties that distinguish good components from bad, and presents techniques for producing high-quality business or scientific writing. Students will apply these techniques by examining selected documents and published papers, producing their own writing, and critiquing the writing of others in class.

BMI 5380 Principles and Foundations of Public Health Informatics
3 semester credit hours/meets part of the basic informatics competencies
Lecture contact hours: 2; Lab contact hours: 3
Web-based and classroom instruction
Lab Fee: $30

This course provides foundational knowledge relevant to Public Health Informatics (PHI), and exposes students to emerging research and application areas in this field. Topics covered include: public health registries and databases, surveillance systems, data exchange and standards, interoperability issues, the role of informatics in health promotion, use of web 2.0 informatics tools to understand behavior change, public health communication and dissemination, public health policy, and project management.

BMI 5381 Methods in Public Health Informatics
3 semester credit hours/meets part of the basic informatics competencies
Web-based and classroom instruction
Lab Fee: $30

This course introduces practical methods and techniques used in PHI. The course will focus on methods for evaluation of the effectiveness and efficiency of public health protection and delivery. The course modules are organized into four sub-domains of PHI methods: 1) theoretical frameworks, evaluation methods, and technological insights of digital behavior change support systems, 2) Legal and policy framework of PHI; 3) GIS and spatial analysis; and 4) Social network methods. The course is designed to familiarize students with methods for addressing the core concepts and issues confronting public health practitioners and researchers in planning, implementation and evaluation of information systems. Published articles will be used as reading assignments to complement class discussions and will provide with the background knowledge and practical context to understand and apply the concepts and the experiences from the class.
BMI 5382 Synthesis Project of Public Health Informatics
3 semester credit hours/meets part of the advanced informatics competencies
Lecture contact hours: 2; Lab contact hours: 3
Web-based instruction
Lab Fee: $30

This course provides an opportunity for students to gain practical, hands-on cumulating knowledge and experience in PHI. This project should reflect a substantial effort and competency of synthesis in informatics developed through the course training that address core competencies of the PHI system by working through a problem of the student’s choice. The selected problem should be discussed and approved by a faculty mentor. This should be tied to research/practice of a student’s interest that includes one or more didactic modules covered in the prior courses. The synthesis project should be based upon the combined efforts of (online) library database search, fieldwork, and mentored research approved by the mentor(s). Expectations of the class include the presentation of the conclusions from the project in a written manner for academic dissemination as a conference abstract/poster.

BMI 6000 Practicum in Biomedical Informatics
1-6 semester credit hours (variable hours/week)
Prerequisite: Consent of practicum coordinator
Course Fee: $1530 (Fall 2018), $1560 (Fall 2019)

During the practicum, each student will select an area of interest in which to apply the knowledge and skills gained during the didactic courses. Students will become active participants in the work of developing informatics-based applications. Each student will develop a specific set of goals, to be approved by the student’s advising committee and practicum supervisor, to be accomplished. These goals will reflect the student’s area of interest and the needs of the organization. This course is graded on a pass/fail basis and is repeated for a maximum of six semester credit hours to meet degree requirements.

BMI 6001 Special Topics in Biomedical Informatics
3 semester credit hours/meets part of the advanced informatics competencies
Web-based and classroom instruction
Prerequisite: Depending on instructor/topic - could require consent

This course provides a timely way to examine cutting-edge topics of interest to students and faculty. The varying content may include topics such as technical writing in Biomedical Informatics, comparing knowledge use across disciplines or computational knowledge methods in Biomedical Informatics. May be repeated as topics vary.

BMI 6002 Directed Study in Biomedical Informatics
1-6 semester credit hours/meets part of advanced informatics competencies (variable hours/week)
Prerequisite: Consent of instructor
This course provides a mechanism for students to explore issues of personal interest in the field of biomedical informatics. The varying content may include topics such as display of large scale nursing data, mapping issues for dentistry or linking public health knowledge to clinical medicine. This course may be graded on a letter grade or pass/fail basis, and may be repeated as topics vary. 3 hours maximum allowed for certificate students. 6 hours for master’s and doctoral students.

**BMI 6300 Advanced Health Information Systems**
3 semester credit hours/meets part of advanced informatics competencies
Lecture contact hours: 2; Lab contact hours: 3
Web-based and classroom instruction
Prerequisite: BMI 5300 or consent of instructor
Lab Fee: $30

This graduate level course will cover various advanced topics in health information systems, such as practice management systems, lab information systems (LIS), bio-banking, mobile health systems, consumer-generated data, and communication among disparate information systems via health information exchange (HIE) platforms. Students will prepare a Market Requirements Document (MRD) or Product Requirements Document (PRD) as a class project.

**BMI 6301 Health Data Display**
3 semester credit hours/meets part of advanced informatics competencies
Web-based instruction

This course will examine the evaluation and design of information displays for health care. The course will focus on three areas: (1) Theories and methodologies for the evaluation of information displays; (2) Techniques and tools for generating effective information displays through visualization; and (3) How the formats of information displays affect decision making in health care.

**BMI 6303 Introduction to Telehealth**
3 semester credit hours/meets part of advanced informatics competencies
Lecture contact hours: 2; Lab contact hours: 3
Web-based and classroom instruction
Lab Fee: $30

The course will provide an overview of telehealth in the context of the general health care system. It will survey the application of telehealth in various medical specialties and different settings, e.g., rural, military/aerospace and corrections. The course will identify key issues in implementing and operating a telehealth program, including technology, economics, law/ethics, training, protocol development, and evaluation.

**BMI 6305 Social Dynamics and Health Information**
3 semester credit hours/meets part of advanced informatics competencies
Web-based instruction
Prerequisite: BMI 5300 or BMI 5310 or consent of instructor
The implementation of information systems will not only greatly enhance the quality of health care but also radically change the nature of health care. This course will look at health care as a distributed system composed of groups of people interacting with each other and with information technology. Two major areas will be covered in the course. The first area is computer-supported cooperative work (CSCW), which is defined as computer-assisted coordinated activity such as reasoning, problem solving, decision-making, routine tasks and communication carried out by a group of collaborating individuals who interact with complex information technology. Most health information systems (such as EMR) are large group-ware that support large numbers of synchronous and asynchronous users with diverse backgrounds in the executions of many different types of tasks. The second area is the social impact of information technology. This area will focus on the impact of the Internet on health care, such as the functions and impacts of virtual communities, online health groups, and telehealth care through the web.

**BMI 6306 Information and Knowledge Representation in Biomedical Informatics**

3 semester credit hours/meets part of advanced informatics competencies
Lecture contact hours: 2; Lab contact hours: 3
Web-based and classroom instruction
Lab Fee: $30

The purpose of this course is to examine the role of information representation, controlled vocabularies and knowledge engineering constructs such as ontologies in conceptualization, design and implementation of modern health information systems. The course will introduce approaches for representing information and knowledge in a distributed network of health information systems. Moving beyond a general understanding of taxonomies, students will gain an understanding of the conceptual foundations of ontologies, including the limitations of the modern systems. Knowledge modeling and engineering principles will be introduced through lectures, hands-on practice and the class project. This will include the design, construction and use of ontologies in health care applications. Through hands-on experience, students will gain insight into the strengths and limitations of the existing resources, approaches and systems as well as point to directions where future work needs to be done.

**BMI 6308 Connected and Personal Health Technologies**

3 semester credit hours/meets part of advanced informatics competencies
Lecture contact hours: 2; Lab contact hours: 3
Web-based and classroom instruction
Prerequisites: Consent of instructor
Lab Fee: $30

Current technology is giving the consumer greater access to health information than at any time in the past. Information is available from federal agencies, volunteer organizations, consumer services and direct consumer-to-consumer communications. The availability of information with varying degrees of quality is changing the way consumers think about their own health as well as changing the relationship between consumers and providers. Students will explore the impact of this technology, consider the directions which the current technology might head and explore the potentials of future technology on the delivery of healthcare. This is a research course and students will be required to complete a research project that contributes to a broader understanding of consumer Biomedical Informatics.
BMI 6309 Healthcare Interface Design
3 semester credit hours /meets part of advanced informatics competencies
Lecture contact hours: 2; Lab contact hours: 3
Web-based and classroom instruction
Prerequisites: Consent of instructor
Lab Fee: $30

This course covers topics of user interface design for health information systems, medical devices, consumer health web sites, and other healthcare related systems. Students will have the opportunity to learn the fundamental principles of human—computer interaction and human factors and learn how to apply them to real world problems through class projects. The focus is on learning why user—friendly interfaces can greatly improve work productivity and enhance the quality of healthcare without radically changing the underlying technology.

BMI 6311 Advanced Decision Analysis
3 semester credit hours /meets part of advanced informatics competencies
Lecture contact hours: 2; Lab contact hours: 3
Web-based and classroom instruction
Lab Fee: $30

This course will focus on decisions made with high degrees of uncertainty. The focus will be on modeling the decisions and the types of uncertainty that are present in the decision making process. The focus will be on developing ways to reduce the amount and types of uncertainty while still maintaining the key elements of the decision making process. In addition, the course will focus on ways to automate the decision making process in terms of the way in which data, information and knowledge is aggregated, the modeling of the decision data against existing standards or protocols, and presenting alternative display approaches to the understanding of the data, information and knowledge employed in the decision making process.

BMI 6313 Scientific Writing in Healthcare
3 semester credit hours/meets part of research informatics competencies
Lecture contact hours: 2; Lab contact hours: 3
Web-based and classroom instruction
Lab Fee: $30

This course provides the advanced skills necessary to write a full range of scientific manuscripts in Biomedical Informatics. The course begins with the philosophy of science, types of scientific research, and types of scientific manuscripts (including review, applied, and research articles). The course then examines each component of a scientific manuscript in detail, including the title, abstract, introduction, literature review, method, discussion, conclusion and appendices. The course covers the purpose of each of these components, discusses properties that distinguish good components from bad, and presents techniques for producing high-quality scientific writing. Students will apply these techniques by examining selected
published papers, producing their own scientific writing, and critiquing the writing of others in the class. Students are expected to enter the class with a draft scientific paper that they have written and a high degree of general writing skills.

**BMI 6315 Advanced Electronic Health Records**  
3 semester credit hours/meets part of advanced informatics competencies  
Lecture contact hours: 2; Lab contact hours: 3  
Web-based and classroom instruction  
Prerequisite: BMI 5313 or consent of instructor  
Lab Fee: $30

This course is designed to provide informatics students with an in-depth overview of the key concepts regarding implementation of a clinically-oriented information system (e.g., an electronic medical record, computer-based provider order entry, nursing 5). The course will strive to present “best practices” in cases which there is evidence to support such assertions. The course will rely heavily upon the published literature as well as the experience of the instructors.

**BMI 6316 Change Management in Biomedical Informatics**  
3 semester credit hours/meets part of advanced informatics competencies  
Lecture contact hours: 2; Lab contact hours: 3  
Web-based and classroom instruction  
Prerequisites: BMI 5300 or concurrent enrollment

The ability to manage change - people, process, and technology - may be the most important factor in successful implementation and in producing sustained outcomes from applied Biomedical Informatics projects. This course will cover the theory and principles of change management, with a particular emphasis on healthcare and information technology innovation at both the individual and organizational level. Tools and techniques for developing comprehensive change management plans will be presented. Case studies of successful and failed change efforts will demonstrate applications of these principles and techniques.

**BMI 6317 Leadership & Entrepreneurship in Biomedical Informatics**  
3 semester credit hours/meets part of advanced informatics competencies  
Lecture contact hours: 2; Lab contact hours: 3  
Web-based and classroom instruction  
Prerequisites: BMI 5300 or concurrent enrollment

This course provides technical skills for students to foster the ability to lead people and projects in informatics work environments. Students will learn about Leadership, Management, and Entrepreneurialism. The course is focused on the significant need in the healthcare IT industry for innovators and students will explore methods that can take their ideas from concept to reality. Business planning, project management, and other areas will be examined during the course to help students think about their own informatics venture.
BMI 6318 Big Data in Biomedical Informatics  
3 semester credit hours/meets part of advanced informatics competencies  
Lecture contact hours: 2; Lab contact hours: 3  
Web-based and classroom instruction  
Prerequisites: consent of instructor  
Lab Fee: $30  

This course will expose students to 'Big Data' projects in biomedicine and healthcare. Through real-world examples we will explore the challenges and success faced by initiatives to improve health care delivery through big data projects. Specific topics may include but are not limited to the Vs of Big Data (volume, velocity, variety, veracity, and value), data analytics, accountable care organizations and population health management.

BMI 6319 Advanced Data Structures in Biomedical Informatics  
3 semester credit hours/meets part of core competencies  
Classroom instruction  
Prerequisites: BMI 5300 and BMI 5007  
Required for PhD students  
Lab Fee: $30  

This course explores new and emerging data structuring problems within the context of healthcare. Advanced data structures are required for a variety of applications, including efficient database design, data mining, information retrieval and web search, among others. Students should be prepared to participate in a variety of programming assignments and complete a project related to their doctoral or other significant research area.

BMI 6322 Distributional Semantics: Methods and Biomedical Applications  
3 semester credit hours/meets part of advanced informatics competencies  
Classroom instruction  
Lab Fee $30  

This course concerns computational methods that learn about the meaning of words and concepts from their distribution in natural language, and consequently are able to perform cognitive tasks in a human-like manner. For example, with the appropriate learning materials, these methods have shown performances comparable with English as a second language speakers on the Test of English as a Foreign Language synonym test. Applications in the biomedical domain include information retrieval, automated indexing of the biomedical literature, literature-based knowledge discovery and the analysis of biological sequences. This course will explore the underlying theories and various methodological approaches used to measure semantic relatedness (the extent to which the meaning of two terms is related), as well as their application in biomedical and other domains. The course will provide hands-on instruction so that students will emerge with the ability to apply the methods taught in the class in their own research.
BMI 6323 Machine Learning in Biomedical Informatics
3 semester credit hours/meets part of the advanced informatics competencies
Lecture contact hours: 2; Lab contact hours: 3
Web-based and classroom instruction
Lab Fee: $30

The increased digitization of biomedical data has dramatically increased interest in methods to analyze large quantities of data. Data mining is the process of transforming this raw data into actionable knowledge, which has led to many spectacular advances in biomedicine. This course provides an introduction to data mining methods from a biomedical perspective. The primary focus will be on practical and commonly used machine learning techniques for data mining (e.g., decision trees, support vector machines, clustering) and how these techniques transform data into knowledge. Students will engage in hands-on projects that expose them to data mining methods. Further, students will be able to critically evaluate the appropriateness of data mining methods on different tasks. This course is designed to accommodate students with a varying degree of technical skills. No programming experience is required.

BMI 6324 Health Information Technology Policy
3 semester credit hours /meets part of the advanced informatics competencies
Web-based and classroom instruction

This course will examine policy issues related to the use of information technologies in health care. It will examine key policies and policy issues in three areas: clinical informatics, consumer informatics and population Biomedical Informatics. The primary focus will be on the United States, but international approaches will also be discussed.

BMI 6328 Health Care Delivery in an EHR-Enabled Environment
3 semester credit hours/meets part of the advanced informatics competencies
Web-based and classroom instruction
Prerequisite: BMI 5300

This course will expose doctoral students to an interdisciplinary research area that aims to explore the challenges of improving health care delivery and reducing costs in an EHR-enabled environment. Students will work with a large-scale claims dataset, examining the impact of this detailed data upon health care quality and reimbursement models. Specific topics may include but are not limited to chronic care management, health care coordination, patient life cycle management, system dynamics, accountable care organizations and population health management.
BMI 6330 Biomedical Natural Language Processing
3 semester credit hours/meets part of advanced informatics competencies
Web-based and classroom instruction
Prerequisite: Consent of instructor

This course will examine current natural language processing (NLP) methods and their applications in the biomedical domain. It will provide a systematic introduction to basic knowledge and methods used in NLP research and hands-on experience with existing biomedical NLP systems. Students will gain knowledge and skills in various NLP tasks such as named entity recognition, information extraction, and information retrieval.

BMI 6331 Medical Imaging and Signal Pattern Recognition
3 semester credit hours/meets part of research informatics competencies
Prerequisite: BMI 5007
Web-based and classroom instruction
Lab Fee: $30

Biomedical data in the form of images, videos or other unstructured signals are continuously collected by clinicians, such as radiologists, dermatologists or ophthalmologists, life science researchers and increasingly by ourselves with our personal devices. Tools able to distill quantitative actionable information from these data are essential to generate phenotypes, aid diagnosis, screening, treatment and automate repetitive tasks. In the era of personalized medicine and big data, they have become an urgent medical need. In this course, you will be introduced to the essential pattern recognitions techniques to build and evaluate such tools. We will be covering the basics of image/signal processing, computer vision and applied machine learning with hands on examples relevant to biomedical applications.

BMI 6332 Personalized Medicine
3 semester credit hours/meets part of advanced informatics competencies
Prerequisite: BMI 5330 or instructor approval
Web-based and classroom instruction
Lab Fee: $30

This course will provide the foundations of precision medicine and its relations with genomics by exposing trainees to the use and interpretation of genetic studies of human populations in the context of phenotypes and diseases. The course will cover principles of genetics underlying associations between genetic variants and disease susceptibility and drug response.

BMI 6333 Current Topics in Genomics
3 semester credit hours/meets part of advanced informatics competencies
Prerequisite: BMI 5330
Web-based and classroom instruction
Bioinformatics play significant roles in modern genetics and genomics studies. Nearly every large-scale biology projects require a significant component of bioinformatics and computational approaches. This course provides an introduction to advanced technologies and resources in genetics, epigenetics, transcriptomics, and phenotype studies, organized as “topics”. Students will be provided with knowledge and skills to apply canonical algorithms in bioinformatics tasks, to identify potential challenges, and to develop their own analysis pipelines.

**BMI 6334 Deep Learning in Biomedical Informatics**
3 semester credit hours/meets part of advanced informatics competencies
Prerequisite: BMI 5007 and BMI 5353 or Instructor Consent
Web-based and classroom instruction

Deep learning and artificial intelligence have disrupted multiple industries including healthcare. This class offers students exposure to basic concepts of and practical skills for deep learning and its applications in selected problems in biomedical informatics. Students will study the foundations of deep learning, understand how to build neural networks, and conduct successful machine learning analyses. Deep learning architectures such as convolutional neural networks, recurrent neural networks, and autoencoders will be explored, along with concepts such as embeddings, dropout, and batch normalization. Case studies from biomedical informatics, including biomedical and clinical natural language processing, medical imaging, electronic health records, and genomics data will be utilized. Students will use the Python language and the state-of-the-art deep learning frameworks to implement deep learning models to solve real world problems. Experience with Python programming and basic knowledge of linear algebra is required.

**BMI 6340 Health Information Visualization & Visual Analytics**
3 semester credit hours/meets part of research informatics competencies
Web-based and classroom instruction
Lab Fee: $30

This course introduces the basics of information visualization, which is the use of interactive visual representations of data to amplify human cognition. Properly constructed visualizations allow us to analyze data by exploring it from different perspectives and using the power of our visual system to quickly reveal patterns and relationships. This course uses practical, hands-on examples and exercises to teach the theory and application of information visualization for health data. The class emphasizes visual analysis of time-series data, ranking and part-to-whole relations, deviations, distributions, correlations, multivariate, and geographic data. You will also learn how to combine multiple visualizations into interactive dashboards and how to use Tableau, a state-of-the-art information visualization tool to produce and deliver visualizations and dashboards quickly and easily.
BMI 7000 Advanced Preceptorship
1-9 semester credit hours (variable hours)
Required for PhD students; may be repeated for up to 9 hours to meet the degree requirement
Prerequisite: Consent of instructor
Enrollment only open to PhD students

The student will use this course to develop a research proposal that will be used as a basis for their doctoral dissertation. The student must complete nine semester credit hours with the supervision of the mentor or primary advisor. The result will be used to prepare for the advance to candidacy exam.

BMI 7050 Research in Biomedical Informatics
1-9 semester credit hours (variable hours)
Required for PhD students; must be repeated for up to 21 hours to meet the degree requirement
Prerequisites: Consent of instructor
Enrollment only open to PhD students

The doctoral candidate must complete 21 hours of research in Biomedical Informatics. The mentor or primary advisor will supervise the advancement of the candidate’s progress.

BMI 7070 Fellowship in Health Informatics
1-9 semester credit hours (variable hours)
(2 hours lecture/3 hours laboratory)
Required for DHI students; must be repeated for up to 21 hours to meet the degree requirement
Prerequisites: Consent of instructor
Enrollment only open to DHI students

DHI students will use this course to implement their translational practice project under the supervision of their primary advisor and in collaboration with their additional committee members. The translational practice project requirements will consist of background and review of relevant literature/evidence, project overview, theoretical framework/logic model, purpose statement/significance of project, evaluation design (including return on investment), implementation/gather evidence, recommendations and finally, future implications. This course must be repeated as students must earn a total of 21 semester credit hours to meet the degree requirement.

BMI 7150 Research Seminar
1 semester credit hour
Required for PhD students; must be repeated for up to 3 hours to meet the degree requirement
Prerequisite: Consent of instructor
Enrollment only open to PhD students

This course involves the weekly research seminars in which both invited speakers and students present their work to an audience of SBMI affiliates. Students participating in the course for credit are required to
both give a seminar presentation, attend at least 80% of the weekly seminars, and fill out evaluation forms (available online). Each student seminar must be supervised by a faculty member (not necessarily the student's advisor). The faculty member will work with students to ensure that the seminars are both appropriate and interesting for the audience.

**BMI 7151 Seminar in Precision Medicine**  
1 semester credit hour  
Lecture contact hours: 1  
Prerequisite: Consent of instructor

Seminar in Precision Medicine will introduce and discuss recent advances, frontier technologies, case studies, and future direction in precision medicine. The topics cover precision medicine, bioinformatics, systems biology, pharmacogenomics, genetics, genomic medicine, study design, methodologies and computational tools. Students enrolled in the course for credit are required to give a seminar presentation, attend at least 80% of the weekly seminars, and fill out evaluation forms. Each student seminar must be supervised by a faculty member (not necessarily the student's advisor). The faculty member will work with students to ensure that the seminars are both appropriate and interesting for the audience.

**BMI 7170 Project Advisement**  
1 semester credit hours/meets part of DHI core competencies  
Required for doctoral students; must be repeated for up to 3 hours to meet the degree requirement  
Prerequisite: Consent of instructor  
Required for DHI students

DHI students will use this course to develop a proposal/plan to be used as a basis for their translational practice project. Students must complete three semester credit hours with the supervision of their primary advisor and additional committee members. The proposal/plan will be used to prepare for the project execution as students develop a timeline for completion of the translational practice project during this course.

**BMI 7301 Grant Writing**  
3 semester credit hours/meets part of research informatics competencies  
Classroom instruction  
Required for PhD students

Students will develop skills in the planning and execution of grant development. The focus will be on NIH and NSF grants forms, but students will also be exposed to grant applications from private organizations. The goal of the course is to enable students to develop a draft that can be used for the funding of dissertation work or to develop a grant that would allow students to continue their dissertation work in a post-dissertation award. Students will learn how to write the narrative, project time lines, include appropriate evaluation and draft budgets.
BMI 7302 Theories and Frameworks for Biomedical Informatics Research
3 semester credit hours/meets part of core competencies
Prerequisites: BMI 5300, BMI 5351, BMI 5310, and BMI 5311
Required for PhD students

This course introduces a variety of significant theories, frameworks and models that are relevant to biomedical informatics knowledge and research. Students will explore these through exploration of methods and application papers. By the end of the semester students will be able to identify theories, frameworks and models that are applicable to their doctoral research.

BMI 7303 Critical Review of Biomedical Informatics Literature Seminar
3 semester credit hours/meets part of core competencies
Prerequisites: BMI 5300, BMI 5351, BMI 5352, BMI 5310, BMI 5311, and BMI 7302
Required for PhD students

The purpose of the critical literature review seminar is to apply and deepen knowledge from an area of biomedical informatics study and demonstrate proficiency in reviewing, synthesizing, and critically analyzing the research literature in a topic area that relates directly to the student’s chosen dissertation topic. By the end of the semester each student will have completed a draft literature review of their chosen subject.

BMI 7304 Advanced Research Design for Biomedical Informatics
3 semester credit hours/meets part of core competencies
Prerequisites: BMI 5300, BMI 5351, BMI 5352, BMI 5310, and BMI 5311
Required for PhD students

This course will provide an in-depth examination of advanced research design and methods for establishing causal statements about the efficacy, effectiveness and generalizability of biomedical informatics research to improve human health. Standards for stating/claiming than an intervention is evidence-based will also be addressed. By the end of the semester students will be able to provide a plausible research design given a scenario and hypothesis.

BMI 7350 Scholarly Foundations of Advanced Health Informatics Practice
3 semester credit hours/meets part of DHI core competencies
(2 hours lecture/3 hours laboratory)
Web-based instruction
Prerequisite: BMI 5300
Required for DHI students

This foundational course focuses on analyzing health informatics competencies, role, and scholarship as the foundation for scholarly practice at the doctoral level. The foundations of science and scientific inquiry are explored including the epistemological and ontological bases for scientific methods, theory, and knowledge. Sources of evidence, theory, and knowledge for health informatics practice are analyzed.
Evidence based practice, leadership, innovation/change, inter-professional collaboration/teams, and quality and safety, are introduced as fundamental components of health informatics practice. Practice inquiry is investigated as a means of guiding science based practice.

**BMI 7351 Evidence-Based Health Informatics Practice**
3 semester credit hours/meets part of DHI core competencies
(2 hours lecture/3 hours laboratory)
Web-based instruction
Prerequisite: BMI 5300
Required for DHI students

In this course the doctoral student will learn the importance of evidence for the advancement of Informatics practice, improvement of varied outcomes, and advancement of the information technology to support a learning health system. The student will apply skills to focus on the current urgency of evidence application to practice, and have a hands on illustration of how to appraise, summarize and translate evidence to support recommendations for quality improvement and sustainment in a learning health system. In addition, this course is intended to update and enhance evidence-based practice knowledge and process for conducting a search, critiquing, and evaluating research publications. Students will learn to perform an electronic literature search from electronic databases and assess, investigate and recommend informatics practice using an evidence-based practice methodology.

**BMI 7360 Advanced Project Management**
3 semester credit hours/meets part of DHI core competencies
(2 hours lecture/3 hours laboratory)
Web-based instruction
Prerequisite: BMI 5300
Required for DHI students

This course is an advanced project management for doctoral students. The student will develop a management plan for a health care information technology project identifying a specific set of operations designed to accomplish a singular goal, to deliver on-time, on-budget, evaluating performance and project integration supporting the strategic goals of the organizations. Moreover, the student will learn to apply evidence-based practice and project management methods and core activities of a project manager that incorporate the five project management processes as well as the tools and techniques essential to the ten project management knowledge areas as defined by the Project Management Institute, Inc.

**BMI 7361 Vendor Relations and Contract Negotiation**
3 semester credit hours/meets part of DHI core competencies
(2 hours lecture/3 hours laboratory)
Web-based instruction
Prerequisite: BMI 5300
Required for DHI students
In this course the doctoral student will have the opportunity to learn the skills needed to effectively manage vendors and negotiate contracts. Through hands-on exercises, students will learn the role of governance to oversee contractual, financial, and service delivery performance that can improve outcomes within projects, programs, and the overall organization portfolio. This governance can be built into the relationship from the onset of the engagement to improve the overall health of the relationship and maximize value for current and future engagements. Students will develop an integrated understanding of how vendors are chosen, motivated and managed, as well as strong contract negotiation skills.

**BMI 9950 Project Evaluation and Writing**  
1-9 semester credit hours (variable hours)  
Required for DHI students; may be repeated for up to 9 hours to meet the degree requirement  
Prerequisite: Consent of instructor

Doctoral students will use this course to develop a project evaluation report to be written upon completion of the translational practice project. Students must present the translational project findings at an oral session that is open to the public. This course may be repeated for at least 9 semester credit hours to meet the degree requirement.

**BMI 9999 Dissertation in Biomedical Informatics**  
1-9 semester credit hours (variable hours)  
Required for PhD students; may be repeated for 9 hours to meet the degree requirement  
Prerequisite: Consent of Instructor

The post-candidacy doctoral student will use this course to write their doctoral dissertation under the supervision of their primary mentor, and in collaboration with their advisory committee. This course may be repeated for at least 9 hours to meet the degree requirement.