Skip to Content
SBMI Horizontal Logo

Licong Cui, Ph.D. is an associate professor in McWilliams School of Biomedical Informatics at the University of Texas Health Science Center at Houston (UTHealth Houston). Dr. Cui's primary research goal is to develop innovative informatics methods and tools to address data science challenges in biomedicine. Dr. Cui’s research interests include ontologies and terminologies, neuroinformatics, big data analytics, large-scale data integration and management, information extraction and information retrieval. Dr. Cui has published over 100 peer-reviewed research papers and served as the principal investigator for a number of grants funded by NIH and NSF. Dr. Cui was the 2022 recipient of the American Medical Informatics Association (AMIA) New Investigator Award and an 2021 recipient of the NSF CAREER Award.

As a well-trained Computer Scientist specialized in Biomedical Informatics, Dr. Cui has strong grounding in algorithms and computational methodologies. For instance, she has designed and developed scalable algorithms for analyzing biomedical data, including extracting epilepsy phenotypes from clinical narratives for patient cohort identification, computing non-lattice subgraphs and detecting relation reversals in the SNOMED CT, mining lexical patterns in non-lattice subgraphs for detecting missing hierarchical relations and concepts in SNOMED CT, Gene Ontology and NCI Thesaurus, performing cross-ontology hierarchical relation examination in the Unified Medical Language System, and mining diverse clinical datasets from the National Sleep Research Resource. At the same time, Dr. Cui has considerable experience in applied informatics, particularly the lifecycle of web-based software development. For example, she has designed, developed and deployed a cross-cohort query system for the National Sleep Research Resource and a data integration system for Sudden Unexpected Death in Epilepsy research. Dr. Cui has conducted collaborative work in multidisciplinary team settings with sleep researchers, epilepsy researchers, cancer researchers, and other informaticians.

“As increasingly large amounts of digital data have been produced by the biomedical research community, ontologies and terminologies have been widely used for orchestrating the coding, management, exchange, and sharing of biomedical data. My research interest spans from the theoretical and computational aspects for analyzing biomedical ontologies (e.g., ontology quality assurance) to the application of ontologies to solve large-scale data science problems in biomedicine (e.g., information extraction and retrieval, data integration and management, and data mining). I am passionate at conducting data science related research in collaboration with biomedical and clinical domain experts.”

  • Tell us about your research center and/or what research/work you are currently working on?

    My current research primarily revolves around two themes: biomedical ontologies and neuroinformatics. Within the realm of biomedical ontologies, my team is actively engaged in developing computational techniques aimed at automatically identifying and rectifying quality issues across a wide spectrum of terminologies, including SNOMED CT, Gene Ontology, and NCI Thesaurus. In the field of neuroinformatics, our efforts are directed towards tackling the intricate challenges of managing and analyzing big data pertaining to epilepsy, sleep disorders, and Alzheimer's disease.

  • What type of student or Postdoctoral Fellow are you looking for to work in your center?
    I am looking for self-motivated students and postdocs who are interested in biomedical data science and artificial intelligence.
  • What does the future of your research look like?
    My future research will harness the power of cutting-edge data science and AI techniques to uncover hidden patterns in vast amount of multimodal biomedical data, with the ultimate goal of advancing patient care.
  • What does the future of informatics look like?
    The future of biomedical informatics forsees a remarkable transformation, driven by the convergence of cutting-edge technologies and an ever-growing wealth of healthcare data. This transformation will empower healthcare professionals with data-driven tools to make informed decisions, fostering a new era of patient-centered and evidence-based medical practice.
  • What courses do you teach?
    I teach BMI 6318 Big Data in Biomedical Informatics. This course will expose students to the technologies used to solve 'Big Data' problems in biomedicine and healthcare.
  • What major UTHealth Houston departments/institutes do you collaborate with?
    Department of Neurology;
    Texas Institute for Restorative Neurotechnologies

Education


  • PhD, Computer Science, Case Western Reserve University, 2014
  • MS, Pure Mathematics, Shaanxi Normal University, 2008
  • BS, Information and Computing Science, Shaanxi Normal University, 2005

Areas of Expertise


  • Ontologies and terminologies
  • Big data analytics
  • Neuroinformatics
  • Health information extraction and retrieval

Staff Support


Leticia Flores | 713-500-3912